Intégrale de $$$8 \ln\left(e^{2}\right) - \ln\left(e^{12}\right)$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \left(8 \ln\left(e^{2}\right) - \ln\left(e^{12}\right)\right)\, de$$$.
Solution
L’entrée est réécrite : $$$\int{\left(8 \ln{\left(e^{2} \right)} - \ln{\left(e^{12} \right)}\right)d e}=\int{4 \ln{\left(e \right)} d e}$$$.
Appliquez la règle du facteur constant $$$\int c f{\left(e \right)}\, de = c \int f{\left(e \right)}\, de$$$ avec $$$c=4$$$ et $$$f{\left(e \right)} = \ln{\left(e \right)}$$$ :
$${\color{red}{\int{4 \ln{\left(e \right)} d e}}} = {\color{red}{\left(4 \int{\ln{\left(e \right)} d e}\right)}}$$
Pour l’intégrale $$$\int{\ln{\left(e \right)} d e}$$$, utilisez l’intégration par parties $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Soient $$$\operatorname{u}=\ln{\left(e \right)}$$$ et $$$\operatorname{dv}=de$$$.
Donc $$$\operatorname{du}=\left(\ln{\left(e \right)}\right)^{\prime }de=\frac{de}{e}$$$ (les étapes peuvent être consultées ») et $$$\operatorname{v}=\int{1 d e}=e$$$ (les étapes peuvent être consultées »).
Ainsi,
$$4 {\color{red}{\int{\ln{\left(e \right)} d e}}}=4 {\color{red}{\left(\ln{\left(e \right)} \cdot e-\int{e \cdot \frac{1}{e} d e}\right)}}=4 {\color{red}{\left(e \ln{\left(e \right)} - \int{1 d e}\right)}}$$
Appliquez la règle de la constante $$$\int c\, de = c e$$$ avec $$$c=1$$$:
$$4 e \ln{\left(e \right)} - 4 {\color{red}{\int{1 d e}}} = 4 e \ln{\left(e \right)} - 4 {\color{red}{e}}$$
Par conséquent,
$$\int{4 \ln{\left(e \right)} d e} = 4 e \ln{\left(e \right)} - 4 e$$
Simplifier:
$$\int{4 \ln{\left(e \right)} d e} = 4 e \left(\ln{\left(e \right)} - 1\right)$$
Ajouter la constante d'intégration :
$$\int{4 \ln{\left(e \right)} d e} = 4 e \left(\ln{\left(e \right)} - 1\right)+C$$
Réponse
$$$\int \left(8 \ln\left(e^{2}\right) - \ln\left(e^{12}\right)\right)\, de = 4 e \left(\ln\left(e\right) - 1\right) + C$$$A