Funktion $$$\frac{1}{\left(x^{2} + 1\right)^{2}}$$$ integraali
Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin
Syötteesi
Määritä $$$\int \frac{1}{\left(x^{2} + 1\right)^{2}}\, dx$$$.
Ratkaisu
Integraalin $$$\int{\frac{1}{\left(x^{2} + 1\right)^{2}} d x}$$$ laskemiseksi sovella osittaisintegrointia $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ integraaliin $$$\int{\frac{1}{x^{2} + 1} d x}$$$.
Olkoon $$$\operatorname{u}=\frac{1}{x^{2} + 1}$$$ ja $$$\operatorname{dv}=dx$$$.
Tällöin $$$\operatorname{du}=\left(\frac{1}{x^{2} + 1}\right)^{\prime }dx=- \frac{2 x}{\left(x^{2} + 1\right)^{2}} dx$$$ (vaiheet ovat nähtävissä ») ja $$$\operatorname{v}=\int{1 d x}=x$$$ (vaiheet ovat nähtävissä »).
Integraali voidaan kirjoittaa muotoon
$$\int{\frac{1}{\left(x^{2} + 1\right)^{2}} d x}=\frac{1}{x^{2} + 1} \cdot x-\int{x \cdot \left(- \frac{2 x}{\left(x^{2} + 1\right)^{2}}\right) d x}=\frac{x}{x^{2} + 1} - \int{\left(- \frac{2 x^{2}}{\left(x^{2} + 1\right)^{2}}\right)d x}$$
Vedä vakio ulos:
$$\frac{x}{x^{2} + 1} - \int{\left(- \frac{2 x^{2}}{\left(x^{2} + 1\right)^{2}}\right)d x}=\frac{x}{x^{2} + 1} + 2 \int{\frac{x^{2}}{\left(x^{2} + 1\right)^{2}} d x}$$
Kirjoita integraandin osoittaja muodossa $$$x^{2}=x^{2}{\color{red}{+1}}{\color{red}{-1}}$$$ ja jaa:
$$\frac{x}{x^{2} + 1} + 2 \int{\frac{x^{2}}{\left(x^{2} + 1\right)^{2}} d x}=\frac{x}{x^{2} + 1} + 2 \int{\left(- \frac{1}{\left(x^{2} + 1\right)^{2}} + \frac{x^{2} + 1}{\left(x^{2} + 1\right)^{2}}\right)d x}=\frac{x}{x^{2} + 1} + 2 \int{\left(\frac{1}{x^{2} + 1} - \frac{1}{\left(x^{2} + 1\right)^{2}}\right)d x}$$
Jaa integraalit:
$$\frac{x}{x^{2} + 1} + 2 \int{\left(\frac{1}{x^{2} + 1} - \frac{1}{\left(x^{2} + 1\right)^{2}}\right)d x}=\frac{x}{x^{2} + 1} - 2 \int{\frac{1}{\left(x^{2} + 1\right)^{2}} d x} + 2 \int{\frac{1}{x^{2} + 1} d x}$$
Täten saamme seuraavan yksinkertaisen lineaarisen yhtälön integraalin suhteen:
$$\int{\frac{1}{x^{2} + 1} d x}=\frac{x}{x^{2} + 1} + 2 \int{\frac{1}{x^{2} + 1} d x} - 2 {\color{red}{\int{\frac{1}{\left(x^{2} + 1\right)^{2}} d x}}}$$
Ratkaisemalla saamme, että
$$\int{\frac{1}{\left(x^{2} + 1\right)^{2}} d x}=\frac{x}{2 \left(x^{2} + 1\right)} + \frac{\int{\frac{1}{x^{2} + 1} d x}}{2}$$
Funktion $$$\frac{1}{x^{2} + 1}$$$ integraali on $$$\int{\frac{1}{x^{2} + 1} d x} = \operatorname{atan}{\left(x \right)}$$$:
$$\frac{x}{2 \left(x^{2} + 1\right)} + \frac{{\color{red}{\int{\frac{1}{x^{2} + 1} d x}}}}{2} = \frac{x}{2 \left(x^{2} + 1\right)} + \frac{{\color{red}{\operatorname{atan}{\left(x \right)}}}}{2}$$
Näin ollen,
$$\int{\frac{1}{\left(x^{2} + 1\right)^{2}} d x} = \frac{x}{2 \left(x^{2} + 1\right)} + \frac{\operatorname{atan}{\left(x \right)}}{2}$$
Sievennä:
$$\int{\frac{1}{\left(x^{2} + 1\right)^{2}} d x} = \frac{x + \left(x^{2} + 1\right) \operatorname{atan}{\left(x \right)}}{2 \left(x^{2} + 1\right)}$$
Lisää integrointivakio:
$$\int{\frac{1}{\left(x^{2} + 1\right)^{2}} d x} = \frac{x + \left(x^{2} + 1\right) \operatorname{atan}{\left(x \right)}}{2 \left(x^{2} + 1\right)}+C$$
Vastaus
$$$\int \frac{1}{\left(x^{2} + 1\right)^{2}}\, dx = \frac{x + \left(x^{2} + 1\right) \operatorname{atan}{\left(x \right)}}{2 \left(x^{2} + 1\right)} + C$$$A