Integralen av $$$\frac{1}{\left(x^{2} + 1\right)^{2}}$$$

Kalkylatorn beräknar integralen/stamfunktionen för $$$\frac{1}{\left(x^{2} + 1\right)^{2}}$$$, med visade steg.

Relaterad kalkylator: Kalkylator för bestämda och oegentliga integraler

Vänligen skriv utan några differentialer såsom $$$dx$$$, $$$dy$$$ osv.
Lämna tomt för automatisk identifiering.

Om räknaren inte beräknade något, om du har identifierat ett fel eller om du har ett förslag/feedback, vänligen kontakta oss.

Din inmatning

Bestäm $$$\int \frac{1}{\left(x^{2} + 1\right)^{2}}\, dx$$$.

Lösning

För att beräkna integralen $$$\int{\frac{1}{\left(x^{2} + 1\right)^{2}} d x}$$$, tillämpa partiell integration $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$ på integralen $$$\int{\frac{1}{x^{2} + 1} d x}$$$.

Låt $$$\operatorname{u}=\frac{1}{x^{2} + 1}$$$ och $$$\operatorname{dv}=dx$$$.

Då gäller $$$\operatorname{du}=\left(\frac{1}{x^{2} + 1}\right)^{\prime }dx=- \frac{2 x}{\left(x^{2} + 1\right)^{2}} dx$$$ (stegen kan ses ») och $$$\operatorname{v}=\int{1 d x}=x$$$ (stegen kan ses »).

Alltså,

$$\int{\frac{1}{\left(x^{2} + 1\right)^{2}} d x}=\frac{1}{x^{2} + 1} \cdot x-\int{x \cdot \left(- \frac{2 x}{\left(x^{2} + 1\right)^{2}}\right) d x}=\frac{x}{x^{2} + 1} - \int{\left(- \frac{2 x^{2}}{\left(x^{2} + 1\right)^{2}}\right)d x}$$

Bryt ut konstanten:

$$\frac{x}{x^{2} + 1} - \int{\left(- \frac{2 x^{2}}{\left(x^{2} + 1\right)^{2}}\right)d x}=\frac{x}{x^{2} + 1} + 2 \int{\frac{x^{2}}{\left(x^{2} + 1\right)^{2}} d x}$$

Skriv om integrandens täljare som $$$x^{2}=x^{2}{\color{red}{+1}}{\color{red}{-1}}$$$ och dela upp:

$$\frac{x}{x^{2} + 1} + 2 \int{\frac{x^{2}}{\left(x^{2} + 1\right)^{2}} d x}=\frac{x}{x^{2} + 1} + 2 \int{\left(- \frac{1}{\left(x^{2} + 1\right)^{2}} + \frac{x^{2} + 1}{\left(x^{2} + 1\right)^{2}}\right)d x}=\frac{x}{x^{2} + 1} + 2 \int{\left(\frac{1}{x^{2} + 1} - \frac{1}{\left(x^{2} + 1\right)^{2}}\right)d x}$$

Dela upp integralerna:

$$\frac{x}{x^{2} + 1} + 2 \int{\left(\frac{1}{x^{2} + 1} - \frac{1}{\left(x^{2} + 1\right)^{2}}\right)d x}=\frac{x}{x^{2} + 1} - 2 \int{\frac{1}{\left(x^{2} + 1\right)^{2}} d x} + 2 \int{\frac{1}{x^{2} + 1} d x}$$

Således får vi följande enkla linjära ekvation med avseende på integralen:

$$\int{\frac{1}{x^{2} + 1} d x}=\frac{x}{x^{2} + 1} + 2 \int{\frac{1}{x^{2} + 1} d x} - 2 {\color{red}{\int{\frac{1}{\left(x^{2} + 1\right)^{2}} d x}}}$$

Genom att lösa det erhåller vi att

$$\int{\frac{1}{\left(x^{2} + 1\right)^{2}} d x}=\frac{x}{2 \left(x^{2} + 1\right)} + \frac{\int{\frac{1}{x^{2} + 1} d x}}{2}$$

Integralen av $$$\frac{1}{x^{2} + 1}$$$ är $$$\int{\frac{1}{x^{2} + 1} d x} = \operatorname{atan}{\left(x \right)}$$$:

$$\frac{x}{2 \left(x^{2} + 1\right)} + \frac{{\color{red}{\int{\frac{1}{x^{2} + 1} d x}}}}{2} = \frac{x}{2 \left(x^{2} + 1\right)} + \frac{{\color{red}{\operatorname{atan}{\left(x \right)}}}}{2}$$

Alltså,

$$\int{\frac{1}{\left(x^{2} + 1\right)^{2}} d x} = \frac{x}{2 \left(x^{2} + 1\right)} + \frac{\operatorname{atan}{\left(x \right)}}{2}$$

Förenkla:

$$\int{\frac{1}{\left(x^{2} + 1\right)^{2}} d x} = \frac{x + \left(x^{2} + 1\right) \operatorname{atan}{\left(x \right)}}{2 \left(x^{2} + 1\right)}$$

Lägg till integrationskonstanten:

$$\int{\frac{1}{\left(x^{2} + 1\right)^{2}} d x} = \frac{x + \left(x^{2} + 1\right) \operatorname{atan}{\left(x \right)}}{2 \left(x^{2} + 1\right)}+C$$

Svar

$$$\int \frac{1}{\left(x^{2} + 1\right)^{2}}\, dx = \frac{x + \left(x^{2} + 1\right) \operatorname{atan}{\left(x \right)}}{2 \left(x^{2} + 1\right)} + C$$$A


Please try a new game Rotatly