$$$\frac{1}{\left(x^{2} + 1\right)^{2}}$$$ 的積分
您的輸入
求$$$\int \frac{1}{\left(x^{2} + 1\right)^{2}}\, dx$$$。
解答
為了計算積分 $$$\int{\frac{1}{\left(x^{2} + 1\right)^{2}} d x}$$$,對積分 $$$\int{\frac{1}{x^{2} + 1} d x}$$$ 使用分部積分法 $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$。
令 $$$\operatorname{u}=\frac{1}{x^{2} + 1}$$$ 與 $$$\operatorname{dv}=dx$$$。
則 $$$\operatorname{du}=\left(\frac{1}{x^{2} + 1}\right)^{\prime }dx=- \frac{2 x}{\left(x^{2} + 1\right)^{2}} dx$$$(步驟見 »),且 $$$\operatorname{v}=\int{1 d x}=x$$$(步驟見 »)。
所以,
$$\int{\frac{1}{\left(x^{2} + 1\right)^{2}} d x}=\frac{1}{x^{2} + 1} \cdot x-\int{x \cdot \left(- \frac{2 x}{\left(x^{2} + 1\right)^{2}}\right) d x}=\frac{x}{x^{2} + 1} - \int{\left(- \frac{2 x^{2}}{\left(x^{2} + 1\right)^{2}}\right)d x}$$
將常數提出:
$$\frac{x}{x^{2} + 1} - \int{\left(- \frac{2 x^{2}}{\left(x^{2} + 1\right)^{2}}\right)d x}=\frac{x}{x^{2} + 1} + 2 \int{\frac{x^{2}}{\left(x^{2} + 1\right)^{2}} d x}$$
將被積分函數的分子改寫為 $$$x^{2}=x^{2}{\color{red}{+1}}{\color{red}{-1}}$$$,並拆分:
$$\frac{x}{x^{2} + 1} + 2 \int{\frac{x^{2}}{\left(x^{2} + 1\right)^{2}} d x}=\frac{x}{x^{2} + 1} + 2 \int{\left(- \frac{1}{\left(x^{2} + 1\right)^{2}} + \frac{x^{2} + 1}{\left(x^{2} + 1\right)^{2}}\right)d x}=\frac{x}{x^{2} + 1} + 2 \int{\left(\frac{1}{x^{2} + 1} - \frac{1}{\left(x^{2} + 1\right)^{2}}\right)d x}$$
將積分拆分:
$$\frac{x}{x^{2} + 1} + 2 \int{\left(\frac{1}{x^{2} + 1} - \frac{1}{\left(x^{2} + 1\right)^{2}}\right)d x}=\frac{x}{x^{2} + 1} - 2 \int{\frac{1}{\left(x^{2} + 1\right)^{2}} d x} + 2 \int{\frac{1}{x^{2} + 1} d x}$$
因此,我們得到如下關於該積分的簡單線性方程:
$$\int{\frac{1}{x^{2} + 1} d x}=\frac{x}{x^{2} + 1} + 2 \int{\frac{1}{x^{2} + 1} d x} - 2 {\color{red}{\int{\frac{1}{\left(x^{2} + 1\right)^{2}} d x}}}$$
解得
$$\int{\frac{1}{\left(x^{2} + 1\right)^{2}} d x}=\frac{x}{2 \left(x^{2} + 1\right)} + \frac{\int{\frac{1}{x^{2} + 1} d x}}{2}$$
$$$\frac{1}{x^{2} + 1}$$$ 的積分是 $$$\int{\frac{1}{x^{2} + 1} d x} = \operatorname{atan}{\left(x \right)}$$$:
$$\frac{x}{2 \left(x^{2} + 1\right)} + \frac{{\color{red}{\int{\frac{1}{x^{2} + 1} d x}}}}{2} = \frac{x}{2 \left(x^{2} + 1\right)} + \frac{{\color{red}{\operatorname{atan}{\left(x \right)}}}}{2}$$
因此,
$$\int{\frac{1}{\left(x^{2} + 1\right)^{2}} d x} = \frac{x}{2 \left(x^{2} + 1\right)} + \frac{\operatorname{atan}{\left(x \right)}}{2}$$
化簡:
$$\int{\frac{1}{\left(x^{2} + 1\right)^{2}} d x} = \frac{x + \left(x^{2} + 1\right) \operatorname{atan}{\left(x \right)}}{2 \left(x^{2} + 1\right)}$$
加上積分常數:
$$\int{\frac{1}{\left(x^{2} + 1\right)^{2}} d x} = \frac{x + \left(x^{2} + 1\right) \operatorname{atan}{\left(x \right)}}{2 \left(x^{2} + 1\right)}+C$$
答案
$$$\int \frac{1}{\left(x^{2} + 1\right)^{2}}\, dx = \frac{x + \left(x^{2} + 1\right) \operatorname{atan}{\left(x \right)}}{2 \left(x^{2} + 1\right)} + C$$$A