Integraali $$$\frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}}$$$:stä muuttujan $$$x$$$ suhteen

Laskin löytää funktion $$$\frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}}$$$ integraalin/kantafunktion muuttujan $$$x$$$ suhteen ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}}\, dx$$$.

Ratkaisu

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\frac{\sqrt{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}}$$$ ja $$$f{\left(x \right)} = x^{2}$$$:

$${\color{red}{\int{\frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}} d x}}} = {\color{red}{\left(\frac{\sqrt{2} x_{1} \int{x^{2} d x}}{2 \sqrt{\pi} e^{\frac{1}{2}}}\right)}}$$

Sovella potenssisääntöä $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ käyttäen $$$n=2$$$:

$$\frac{\sqrt{2} x_{1} {\color{red}{\int{x^{2} d x}}}}{2 \sqrt{\pi} e^{\frac{1}{2}}}=\frac{\sqrt{2} x_{1} {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}}{2 \sqrt{\pi} e^{\frac{1}{2}}}=\frac{\sqrt{2} x_{1} {\color{red}{\left(\frac{x^{3}}{3}\right)}}}{2 \sqrt{\pi} e^{\frac{1}{2}}}$$

Näin ollen,

$$\int{\frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}} d x} = \frac{\sqrt{2} x^{3} x_{1}}{6 \sqrt{\pi} e^{\frac{1}{2}}}$$

Lisää integrointivakio:

$$\int{\frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}} d x} = \frac{\sqrt{2} x^{3} x_{1}}{6 \sqrt{\pi} e^{\frac{1}{2}}}+C$$

Vastaus

$$$\int \frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}}\, dx = \frac{\sqrt{2} x^{3} x_{1}}{6 \sqrt{\pi} e^{\frac{1}{2}}} + C$$$A


Please try a new game Rotatly