Integral dari $$$\frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}}$$$ terhadap $$$x$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}}$$$ terhadap $$$x$$$, dengan langkah-langkah yang ditunjukkan.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}}\, dx$$$.

Solusi

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\frac{\sqrt{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}}$$$ dan $$$f{\left(x \right)} = x^{2}$$$:

$${\color{red}{\int{\frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}} d x}}} = {\color{red}{\left(\frac{\sqrt{2} x_{1} \int{x^{2} d x}}{2 \sqrt{\pi} e^{\frac{1}{2}}}\right)}}$$

Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=2$$$:

$$\frac{\sqrt{2} x_{1} {\color{red}{\int{x^{2} d x}}}}{2 \sqrt{\pi} e^{\frac{1}{2}}}=\frac{\sqrt{2} x_{1} {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}}{2 \sqrt{\pi} e^{\frac{1}{2}}}=\frac{\sqrt{2} x_{1} {\color{red}{\left(\frac{x^{3}}{3}\right)}}}{2 \sqrt{\pi} e^{\frac{1}{2}}}$$

Oleh karena itu,

$$\int{\frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}} d x} = \frac{\sqrt{2} x^{3} x_{1}}{6 \sqrt{\pi} e^{\frac{1}{2}}}$$

Tambahkan konstanta integrasi:

$$\int{\frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}} d x} = \frac{\sqrt{2} x^{3} x_{1}}{6 \sqrt{\pi} e^{\frac{1}{2}}}+C$$

Jawaban

$$$\int \frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}}\, dx = \frac{\sqrt{2} x^{3} x_{1}}{6 \sqrt{\pi} e^{\frac{1}{2}}} + C$$$A


Please try a new game Rotatly