$$$\frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}}$$$$$$x$$$ 的積分

此計算器會求出 $$$\frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}}$$$$$$x$$$ 的不定積分/原函數,並顯示步驟。

相關計算器: 定積分與廣義積分計算器

請不要使用任何微分符號,例如 $$$dx$$$$$$dy$$$ 等。
留空以自動偵測。

如果計算器未能計算某些內容,或您發現了錯誤,或您有任何建議/回饋,請聯絡我們

您的輸入

$$$\int \frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}}\, dx$$$

解答

套用常數倍法則 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$,使用 $$$c=\frac{\sqrt{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}}$$$$$$f{\left(x \right)} = x^{2}$$$

$${\color{red}{\int{\frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}} d x}}} = {\color{red}{\left(\frac{\sqrt{2} x_{1} \int{x^{2} d x}}{2 \sqrt{\pi} e^{\frac{1}{2}}}\right)}}$$

套用冪次法則 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$

$$\frac{\sqrt{2} x_{1} {\color{red}{\int{x^{2} d x}}}}{2 \sqrt{\pi} e^{\frac{1}{2}}}=\frac{\sqrt{2} x_{1} {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}}{2 \sqrt{\pi} e^{\frac{1}{2}}}=\frac{\sqrt{2} x_{1} {\color{red}{\left(\frac{x^{3}}{3}\right)}}}{2 \sqrt{\pi} e^{\frac{1}{2}}}$$

因此,

$$\int{\frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}} d x} = \frac{\sqrt{2} x^{3} x_{1}}{6 \sqrt{\pi} e^{\frac{1}{2}}}$$

加上積分常數:

$$\int{\frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}} d x} = \frac{\sqrt{2} x^{3} x_{1}}{6 \sqrt{\pi} e^{\frac{1}{2}}}+C$$

答案

$$$\int \frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}}\, dx = \frac{\sqrt{2} x^{3} x_{1}}{6 \sqrt{\pi} e^{\frac{1}{2}}} + C$$$A


Please try a new game Rotatly