Integral of $$$\frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}}$$$ with respect to $$$x$$$

The calculator will find the integral/antiderivative of $$$\frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}}$$$ with respect to $$$x$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}}\, dx$$$.

Solution

Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\frac{\sqrt{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}}$$$ and $$$f{\left(x \right)} = x^{2}$$$:

$${\color{red}{\int{\frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}} d x}}} = {\color{red}{\left(\frac{\sqrt{2} x_{1} \int{x^{2} d x}}{2 \sqrt{\pi} e^{\frac{1}{2}}}\right)}}$$

Apply the power rule $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ with $$$n=2$$$:

$$\frac{\sqrt{2} x_{1} {\color{red}{\int{x^{2} d x}}}}{2 \sqrt{\pi} e^{\frac{1}{2}}}=\frac{\sqrt{2} x_{1} {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}}{2 \sqrt{\pi} e^{\frac{1}{2}}}=\frac{\sqrt{2} x_{1} {\color{red}{\left(\frac{x^{3}}{3}\right)}}}{2 \sqrt{\pi} e^{\frac{1}{2}}}$$

Therefore,

$$\int{\frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}} d x} = \frac{\sqrt{2} x^{3} x_{1}}{6 \sqrt{\pi} e^{\frac{1}{2}}}$$

Add the constant of integration:

$$\int{\frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}} d x} = \frac{\sqrt{2} x^{3} x_{1}}{6 \sqrt{\pi} e^{\frac{1}{2}}}+C$$

Answer

$$$\int \frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}}\, dx = \frac{\sqrt{2} x^{3} x_{1}}{6 \sqrt{\pi} e^{\frac{1}{2}}} + C$$$A


Please try a new game Rotatly