$$$\frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}}$$$ 关于$$$x$$$的积分
相关计算器: 定积分与广义积分计算器
您的输入
求$$$\int \frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}}\, dx$$$。
解答
对 $$$c=\frac{\sqrt{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}}$$$ 和 $$$f{\left(x \right)} = x^{2}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$:
$${\color{red}{\int{\frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}} d x}}} = {\color{red}{\left(\frac{\sqrt{2} x_{1} \int{x^{2} d x}}{2 \sqrt{\pi} e^{\frac{1}{2}}}\right)}}$$
应用幂法则 $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,其中 $$$n=2$$$:
$$\frac{\sqrt{2} x_{1} {\color{red}{\int{x^{2} d x}}}}{2 \sqrt{\pi} e^{\frac{1}{2}}}=\frac{\sqrt{2} x_{1} {\color{red}{\frac{x^{1 + 2}}{1 + 2}}}}{2 \sqrt{\pi} e^{\frac{1}{2}}}=\frac{\sqrt{2} x_{1} {\color{red}{\left(\frac{x^{3}}{3}\right)}}}{2 \sqrt{\pi} e^{\frac{1}{2}}}$$
因此,
$$\int{\frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}} d x} = \frac{\sqrt{2} x^{3} x_{1}}{6 \sqrt{\pi} e^{\frac{1}{2}}}$$
加上积分常数:
$$\int{\frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}} d x} = \frac{\sqrt{2} x^{3} x_{1}}{6 \sqrt{\pi} e^{\frac{1}{2}}}+C$$
答案
$$$\int \frac{\sqrt{2} x^{2} x_{1}}{2 \sqrt{\pi} e^{\frac{1}{2}}}\, dx = \frac{\sqrt{2} x^{3} x_{1}}{6 \sqrt{\pi} e^{\frac{1}{2}}} + C$$$A