Funktion $$$\sin{\left(x^{2} - 4 \right)}$$$ integraali

Laskin löytää funktion $$$\sin{\left(x^{2} - 4 \right)}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \sin{\left(x^{2} - 4 \right)}\, dx$$$.

Ratkaisu

Kirjoita integroituva uudelleen:

$${\color{red}{\int{\sin{\left(x^{2} - 4 \right)} d x}}} = {\color{red}{\int{\left(\sin{\left(x^{2} \right)} \cos{\left(4 \right)} - \sin{\left(4 \right)} \cos{\left(x^{2} \right)}\right)d x}}}$$

Integroi termi kerrallaan:

$${\color{red}{\int{\left(\sin{\left(x^{2} \right)} \cos{\left(4 \right)} - \sin{\left(4 \right)} \cos{\left(x^{2} \right)}\right)d x}}} = {\color{red}{\left(- \int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x} + \int{\sin{\left(x^{2} \right)} \cos{\left(4 \right)} d x}\right)}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\cos{\left(4 \right)}$$$ ja $$$f{\left(x \right)} = \sin{\left(x^{2} \right)}$$$:

$$- \int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x} + {\color{red}{\int{\sin{\left(x^{2} \right)} \cos{\left(4 \right)} d x}}} = - \int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x} + {\color{red}{\cos{\left(4 \right)} \int{\sin{\left(x^{2} \right)} d x}}}$$

Tällä integraalilla (Fresnelin sini-integraali) ei ole suljettua muotoa:

$$- \int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x} + \cos{\left(4 \right)} {\color{red}{\int{\sin{\left(x^{2} \right)} d x}}} = - \int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x} + \cos{\left(4 \right)} {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}\right)}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ käyttäen $$$c=\sin{\left(4 \right)}$$$ ja $$$f{\left(x \right)} = \cos{\left(x^{2} \right)}$$$:

$$\frac{\sqrt{2} \sqrt{\pi} \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} - {\color{red}{\int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x}}} = \frac{\sqrt{2} \sqrt{\pi} \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} - {\color{red}{\sin{\left(4 \right)} \int{\cos{\left(x^{2} \right)} d x}}}$$

Tällä integraalilla (Fresnelin kosini-integraali) ei ole suljettua muotoa:

$$\frac{\sqrt{2} \sqrt{\pi} \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} - \sin{\left(4 \right)} {\color{red}{\int{\cos{\left(x^{2} \right)} d x}}} = \frac{\sqrt{2} \sqrt{\pi} \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} - \sin{\left(4 \right)} {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}\right)}}$$

Näin ollen,

$$\int{\sin{\left(x^{2} - 4 \right)} d x} = - \frac{\sqrt{2} \sqrt{\pi} \sin{\left(4 \right)} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} + \frac{\sqrt{2} \sqrt{\pi} \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}$$

Sievennä:

$$\int{\sin{\left(x^{2} - 4 \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} \left(- \sin{\left(4 \right)} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right) + \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)\right)}{2}$$

Lisää integrointivakio:

$$\int{\sin{\left(x^{2} - 4 \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} \left(- \sin{\left(4 \right)} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right) + \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)\right)}{2}+C$$

Vastaus

$$$\int \sin{\left(x^{2} - 4 \right)}\, dx = \frac{\sqrt{2} \sqrt{\pi} \left(- \sin{\left(4 \right)} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right) + \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)\right)}{2} + C$$$A


Please try a new game Rotatly