Integral of $$$\sin{\left(x^{2} - 4 \right)}$$$
Related calculator: Definite and Improper Integral Calculator
Your Input
Find $$$\int \sin{\left(x^{2} - 4 \right)}\, dx$$$.
Solution
Rewrite the integrand:
$${\color{red}{\int{\sin{\left(x^{2} - 4 \right)} d x}}} = {\color{red}{\int{\left(\sin{\left(x^{2} \right)} \cos{\left(4 \right)} - \sin{\left(4 \right)} \cos{\left(x^{2} \right)}\right)d x}}}$$
Integrate term by term:
$${\color{red}{\int{\left(\sin{\left(x^{2} \right)} \cos{\left(4 \right)} - \sin{\left(4 \right)} \cos{\left(x^{2} \right)}\right)d x}}} = {\color{red}{\left(- \int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x} + \int{\sin{\left(x^{2} \right)} \cos{\left(4 \right)} d x}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\cos{\left(4 \right)}$$$ and $$$f{\left(x \right)} = \sin{\left(x^{2} \right)}$$$:
$$- \int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x} + {\color{red}{\int{\sin{\left(x^{2} \right)} \cos{\left(4 \right)} d x}}} = - \int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x} + {\color{red}{\cos{\left(4 \right)} \int{\sin{\left(x^{2} \right)} d x}}}$$
This integral (Fresnel Sine Integral) does not have a closed form:
$$- \int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x} + \cos{\left(4 \right)} {\color{red}{\int{\sin{\left(x^{2} \right)} d x}}} = - \int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x} + \cos{\left(4 \right)} {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}\right)}}$$
Apply the constant multiple rule $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ with $$$c=\sin{\left(4 \right)}$$$ and $$$f{\left(x \right)} = \cos{\left(x^{2} \right)}$$$:
$$\frac{\sqrt{2} \sqrt{\pi} \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} - {\color{red}{\int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x}}} = \frac{\sqrt{2} \sqrt{\pi} \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} - {\color{red}{\sin{\left(4 \right)} \int{\cos{\left(x^{2} \right)} d x}}}$$
This integral (Fresnel Cosine Integral) does not have a closed form:
$$\frac{\sqrt{2} \sqrt{\pi} \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} - \sin{\left(4 \right)} {\color{red}{\int{\cos{\left(x^{2} \right)} d x}}} = \frac{\sqrt{2} \sqrt{\pi} \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} - \sin{\left(4 \right)} {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}\right)}}$$
Therefore,
$$\int{\sin{\left(x^{2} - 4 \right)} d x} = - \frac{\sqrt{2} \sqrt{\pi} \sin{\left(4 \right)} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} + \frac{\sqrt{2} \sqrt{\pi} \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}$$
Simplify:
$$\int{\sin{\left(x^{2} - 4 \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} \left(- \sin{\left(4 \right)} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right) + \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)\right)}{2}$$
Add the constant of integration:
$$\int{\sin{\left(x^{2} - 4 \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} \left(- \sin{\left(4 \right)} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right) + \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)\right)}{2}+C$$
Answer
$$$\int \sin{\left(x^{2} - 4 \right)}\, dx = \frac{\sqrt{2} \sqrt{\pi} \left(- \sin{\left(4 \right)} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right) + \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)\right)}{2} + C$$$A