Integrale di $$$\sin{\left(x^{2} - 4 \right)}$$$
Calcolatore correlato: Calcolatore di integrali definiti e impropri
Il tuo input
Trova $$$\int \sin{\left(x^{2} - 4 \right)}\, dx$$$.
Soluzione
Riscrivi l'integrando:
$${\color{red}{\int{\sin{\left(x^{2} - 4 \right)} d x}}} = {\color{red}{\int{\left(\sin{\left(x^{2} \right)} \cos{\left(4 \right)} - \sin{\left(4 \right)} \cos{\left(x^{2} \right)}\right)d x}}}$$
Integra termine per termine:
$${\color{red}{\int{\left(\sin{\left(x^{2} \right)} \cos{\left(4 \right)} - \sin{\left(4 \right)} \cos{\left(x^{2} \right)}\right)d x}}} = {\color{red}{\left(- \int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x} + \int{\sin{\left(x^{2} \right)} \cos{\left(4 \right)} d x}\right)}}$$
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\cos{\left(4 \right)}$$$ e $$$f{\left(x \right)} = \sin{\left(x^{2} \right)}$$$:
$$- \int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x} + {\color{red}{\int{\sin{\left(x^{2} \right)} \cos{\left(4 \right)} d x}}} = - \int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x} + {\color{red}{\cos{\left(4 \right)} \int{\sin{\left(x^{2} \right)} d x}}}$$
Questo integrale (Integrale seno di Fresnel) non ha una forma chiusa:
$$- \int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x} + \cos{\left(4 \right)} {\color{red}{\int{\sin{\left(x^{2} \right)} d x}}} = - \int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x} + \cos{\left(4 \right)} {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}\right)}}$$
Applica la regola del fattore costante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\sin{\left(4 \right)}$$$ e $$$f{\left(x \right)} = \cos{\left(x^{2} \right)}$$$:
$$\frac{\sqrt{2} \sqrt{\pi} \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} - {\color{red}{\int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x}}} = \frac{\sqrt{2} \sqrt{\pi} \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} - {\color{red}{\sin{\left(4 \right)} \int{\cos{\left(x^{2} \right)} d x}}}$$
Questo integrale (Integrale coseno di Fresnel) non ha una forma chiusa:
$$\frac{\sqrt{2} \sqrt{\pi} \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} - \sin{\left(4 \right)} {\color{red}{\int{\cos{\left(x^{2} \right)} d x}}} = \frac{\sqrt{2} \sqrt{\pi} \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} - \sin{\left(4 \right)} {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}\right)}}$$
Pertanto,
$$\int{\sin{\left(x^{2} - 4 \right)} d x} = - \frac{\sqrt{2} \sqrt{\pi} \sin{\left(4 \right)} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} + \frac{\sqrt{2} \sqrt{\pi} \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}$$
Semplifica:
$$\int{\sin{\left(x^{2} - 4 \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} \left(- \sin{\left(4 \right)} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right) + \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)\right)}{2}$$
Aggiungi la costante di integrazione:
$$\int{\sin{\left(x^{2} - 4 \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} \left(- \sin{\left(4 \right)} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right) + \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)\right)}{2}+C$$
Risposta
$$$\int \sin{\left(x^{2} - 4 \right)}\, dx = \frac{\sqrt{2} \sqrt{\pi} \left(- \sin{\left(4 \right)} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right) + \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)\right)}{2} + C$$$A