$$$\sin{\left(x^{2} - 4 \right)}$$$ 的积分

该计算器将求出$$$\sin{\left(x^{2} - 4 \right)}$$$的积分/原函数,并显示步骤。

相关计算器: 定积分与广义积分计算器

请在书写时不要包含任何微分,例如 $$$dx$$$$$$dy$$$ 等。
留空以自动检测。

如果计算器未能计算某些内容,或者您发现了错误,或者您有建议/反馈,请 联系我们

您的输入

$$$\int \sin{\left(x^{2} - 4 \right)}\, dx$$$

解答

改写被积函数:

$${\color{red}{\int{\sin{\left(x^{2} - 4 \right)} d x}}} = {\color{red}{\int{\left(\sin{\left(x^{2} \right)} \cos{\left(4 \right)} - \sin{\left(4 \right)} \cos{\left(x^{2} \right)}\right)d x}}}$$

逐项积分:

$${\color{red}{\int{\left(\sin{\left(x^{2} \right)} \cos{\left(4 \right)} - \sin{\left(4 \right)} \cos{\left(x^{2} \right)}\right)d x}}} = {\color{red}{\left(- \int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x} + \int{\sin{\left(x^{2} \right)} \cos{\left(4 \right)} d x}\right)}}$$

$$$c=\cos{\left(4 \right)}$$$$$$f{\left(x \right)} = \sin{\left(x^{2} \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$- \int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x} + {\color{red}{\int{\sin{\left(x^{2} \right)} \cos{\left(4 \right)} d x}}} = - \int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x} + {\color{red}{\cos{\left(4 \right)} \int{\sin{\left(x^{2} \right)} d x}}}$$

该积分(菲涅耳正弦积分)没有闭式表达式:

$$- \int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x} + \cos{\left(4 \right)} {\color{red}{\int{\sin{\left(x^{2} \right)} d x}}} = - \int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x} + \cos{\left(4 \right)} {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}\right)}}$$

$$$c=\sin{\left(4 \right)}$$$$$$f{\left(x \right)} = \cos{\left(x^{2} \right)}$$$ 应用常数倍法则 $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$

$$\frac{\sqrt{2} \sqrt{\pi} \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} - {\color{red}{\int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x}}} = \frac{\sqrt{2} \sqrt{\pi} \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} - {\color{red}{\sin{\left(4 \right)} \int{\cos{\left(x^{2} \right)} d x}}}$$

该积分(菲涅耳余弦积分)没有闭式表达式:

$$\frac{\sqrt{2} \sqrt{\pi} \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} - \sin{\left(4 \right)} {\color{red}{\int{\cos{\left(x^{2} \right)} d x}}} = \frac{\sqrt{2} \sqrt{\pi} \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} - \sin{\left(4 \right)} {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}\right)}}$$

因此,

$$\int{\sin{\left(x^{2} - 4 \right)} d x} = - \frac{\sqrt{2} \sqrt{\pi} \sin{\left(4 \right)} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} + \frac{\sqrt{2} \sqrt{\pi} \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}$$

化简:

$$\int{\sin{\left(x^{2} - 4 \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} \left(- \sin{\left(4 \right)} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right) + \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)\right)}{2}$$

加上积分常数:

$$\int{\sin{\left(x^{2} - 4 \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} \left(- \sin{\left(4 \right)} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right) + \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)\right)}{2}+C$$

答案

$$$\int \sin{\left(x^{2} - 4 \right)}\, dx = \frac{\sqrt{2} \sqrt{\pi} \left(- \sin{\left(4 \right)} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right) + \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)\right)}{2} + C$$$A


Please try a new game Rotatly