Integral dari $$$\sin{\left(x^{2} - 4 \right)}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\sin{\left(x^{2} - 4 \right)}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \sin{\left(x^{2} - 4 \right)}\, dx$$$.

Solusi

Tulis ulang integran:

$${\color{red}{\int{\sin{\left(x^{2} - 4 \right)} d x}}} = {\color{red}{\int{\left(\sin{\left(x^{2} \right)} \cos{\left(4 \right)} - \sin{\left(4 \right)} \cos{\left(x^{2} \right)}\right)d x}}}$$

Integralkan suku demi suku:

$${\color{red}{\int{\left(\sin{\left(x^{2} \right)} \cos{\left(4 \right)} - \sin{\left(4 \right)} \cos{\left(x^{2} \right)}\right)d x}}} = {\color{red}{\left(- \int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x} + \int{\sin{\left(x^{2} \right)} \cos{\left(4 \right)} d x}\right)}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\cos{\left(4 \right)}$$$ dan $$$f{\left(x \right)} = \sin{\left(x^{2} \right)}$$$:

$$- \int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x} + {\color{red}{\int{\sin{\left(x^{2} \right)} \cos{\left(4 \right)} d x}}} = - \int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x} + {\color{red}{\cos{\left(4 \right)} \int{\sin{\left(x^{2} \right)} d x}}}$$

Integral ini (Integral Fresnel Sinus) tidak memiliki bentuk tertutup:

$$- \int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x} + \cos{\left(4 \right)} {\color{red}{\int{\sin{\left(x^{2} \right)} d x}}} = - \int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x} + \cos{\left(4 \right)} {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}\right)}}$$

Terapkan aturan pengali konstanta $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ dengan $$$c=\sin{\left(4 \right)}$$$ dan $$$f{\left(x \right)} = \cos{\left(x^{2} \right)}$$$:

$$\frac{\sqrt{2} \sqrt{\pi} \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} - {\color{red}{\int{\sin{\left(4 \right)} \cos{\left(x^{2} \right)} d x}}} = \frac{\sqrt{2} \sqrt{\pi} \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} - {\color{red}{\sin{\left(4 \right)} \int{\cos{\left(x^{2} \right)} d x}}}$$

Integral ini (Integral Kosinus Fresnel) tidak memiliki bentuk tertutup:

$$\frac{\sqrt{2} \sqrt{\pi} \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} - \sin{\left(4 \right)} {\color{red}{\int{\cos{\left(x^{2} \right)} d x}}} = \frac{\sqrt{2} \sqrt{\pi} \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} - \sin{\left(4 \right)} {\color{red}{\left(\frac{\sqrt{2} \sqrt{\pi} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}\right)}}$$

Oleh karena itu,

$$\int{\sin{\left(x^{2} - 4 \right)} d x} = - \frac{\sqrt{2} \sqrt{\pi} \sin{\left(4 \right)} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2} + \frac{\sqrt{2} \sqrt{\pi} \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)}{2}$$

Sederhanakan:

$$\int{\sin{\left(x^{2} - 4 \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} \left(- \sin{\left(4 \right)} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right) + \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)\right)}{2}$$

Tambahkan konstanta integrasi:

$$\int{\sin{\left(x^{2} - 4 \right)} d x} = \frac{\sqrt{2} \sqrt{\pi} \left(- \sin{\left(4 \right)} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right) + \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)\right)}{2}+C$$

Jawaban

$$$\int \sin{\left(x^{2} - 4 \right)}\, dx = \frac{\sqrt{2} \sqrt{\pi} \left(- \sin{\left(4 \right)} C\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right) + \cos{\left(4 \right)} S\left(\frac{\sqrt{2} x}{\sqrt{\pi}}\right)\right)}{2} + C$$$A


Please try a new game Rotatly