Funktion $$$\frac{1}{2} - \frac{\sin{\left(2 a \right)}}{2}$$$ integraali

Laskin löytää funktion $$$\frac{1}{2} - \frac{\sin{\left(2 a \right)}}{2}$$$ integraalin/alkufunktion ja näyttää vaiheet.

Aiheeseen liittyvä laskin: Määrättyjen ja epäoleellisten integraalien laskin

Kirjoita ilman differentiaaleja kuten $$$dx$$$, $$$dy$$$ jne.
Jätä tyhjäksi automaattista tunnistusta varten.

Jos laskin ei laskenut jotakin tai olet havainnut virheen tai sinulla on ehdotus tai palaute, ole hyvä ja ota meihin yhteyttä.

Syötteesi

Määritä $$$\int \left(\frac{1}{2} - \frac{\sin{\left(2 a \right)}}{2}\right)\, da$$$.

Ratkaisu

Integroi termi kerrallaan:

$${\color{red}{\int{\left(\frac{1}{2} - \frac{\sin{\left(2 a \right)}}{2}\right)d a}}} = {\color{red}{\left(\int{\frac{1}{2} d a} - \int{\frac{\sin{\left(2 a \right)}}{2} d a}\right)}}$$

Sovella vakiosääntöä $$$\int c\, da = a c$$$ käyttäen $$$c=\frac{1}{2}$$$:

$$- \int{\frac{\sin{\left(2 a \right)}}{2} d a} + {\color{red}{\int{\frac{1}{2} d a}}} = - \int{\frac{\sin{\left(2 a \right)}}{2} d a} + {\color{red}{\left(\frac{a}{2}\right)}}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(a \right)}\, da = c \int f{\left(a \right)}\, da$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(a \right)} = \sin{\left(2 a \right)}$$$:

$$\frac{a}{2} - {\color{red}{\int{\frac{\sin{\left(2 a \right)}}{2} d a}}} = \frac{a}{2} - {\color{red}{\left(\frac{\int{\sin{\left(2 a \right)} d a}}{2}\right)}}$$

Olkoon $$$u=2 a$$$.

Tällöin $$$du=\left(2 a\right)^{\prime }da = 2 da$$$ (vaiheet ovat nähtävissä ») ja saamme, että $$$da = \frac{du}{2}$$$.

Näin ollen,

$$\frac{a}{2} - \frac{{\color{red}{\int{\sin{\left(2 a \right)} d a}}}}{2} = \frac{a}{2} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2}$$

Sovella vakiokertoimen sääntöä $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ käyttäen $$$c=\frac{1}{2}$$$ ja $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$$\frac{a}{2} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2} = \frac{a}{2} - \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}}{2}$$

Sinifunktion integraali on $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$\frac{a}{2} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{4} = \frac{a}{2} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{4}$$

Muista, että $$$u=2 a$$$:

$$\frac{a}{2} + \frac{\cos{\left({\color{red}{u}} \right)}}{4} = \frac{a}{2} + \frac{\cos{\left({\color{red}{\left(2 a\right)}} \right)}}{4}$$

Näin ollen,

$$\int{\left(\frac{1}{2} - \frac{\sin{\left(2 a \right)}}{2}\right)d a} = \frac{a}{2} + \frac{\cos{\left(2 a \right)}}{4}$$

Lisää integrointivakio:

$$\int{\left(\frac{1}{2} - \frac{\sin{\left(2 a \right)}}{2}\right)d a} = \frac{a}{2} + \frac{\cos{\left(2 a \right)}}{4}+C$$

Vastaus

$$$\int \left(\frac{1}{2} - \frac{\sin{\left(2 a \right)}}{2}\right)\, da = \left(\frac{a}{2} + \frac{\cos{\left(2 a \right)}}{4}\right) + C$$$A


Please try a new game Rotatly