Integral of $$$\frac{1}{2} - \frac{\sin{\left(2 a \right)}}{2}$$$

The calculator will find the integral/antiderivative of $$$\frac{1}{2} - \frac{\sin{\left(2 a \right)}}{2}$$$, with steps shown.

Related calculator: Definite and Improper Integral Calculator

Please write without any differentials such as $$$dx$$$, $$$dy$$$ etc.
Leave empty for autodetection.

If the calculator did not compute something or you have identified an error, or you have a suggestion/feedback, please contact us.

Your Input

Find $$$\int \left(\frac{1}{2} - \frac{\sin{\left(2 a \right)}}{2}\right)\, da$$$.

Solution

Integrate term by term:

$${\color{red}{\int{\left(\frac{1}{2} - \frac{\sin{\left(2 a \right)}}{2}\right)d a}}} = {\color{red}{\left(\int{\frac{1}{2} d a} - \int{\frac{\sin{\left(2 a \right)}}{2} d a}\right)}}$$

Apply the constant rule $$$\int c\, da = a c$$$ with $$$c=\frac{1}{2}$$$:

$$- \int{\frac{\sin{\left(2 a \right)}}{2} d a} + {\color{red}{\int{\frac{1}{2} d a}}} = - \int{\frac{\sin{\left(2 a \right)}}{2} d a} + {\color{red}{\left(\frac{a}{2}\right)}}$$

Apply the constant multiple rule $$$\int c f{\left(a \right)}\, da = c \int f{\left(a \right)}\, da$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(a \right)} = \sin{\left(2 a \right)}$$$:

$$\frac{a}{2} - {\color{red}{\int{\frac{\sin{\left(2 a \right)}}{2} d a}}} = \frac{a}{2} - {\color{red}{\left(\frac{\int{\sin{\left(2 a \right)} d a}}{2}\right)}}$$

Let $$$u=2 a$$$.

Then $$$du=\left(2 a\right)^{\prime }da = 2 da$$$ (steps can be seen »), and we have that $$$da = \frac{du}{2}$$$.

So,

$$\frac{a}{2} - \frac{{\color{red}{\int{\sin{\left(2 a \right)} d a}}}}{2} = \frac{a}{2} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2}$$

Apply the constant multiple rule $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ with $$$c=\frac{1}{2}$$$ and $$$f{\left(u \right)} = \sin{\left(u \right)}$$$:

$$\frac{a}{2} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2} = \frac{a}{2} - \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}}{2}$$

The integral of the sine is $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:

$$\frac{a}{2} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{4} = \frac{a}{2} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{4}$$

Recall that $$$u=2 a$$$:

$$\frac{a}{2} + \frac{\cos{\left({\color{red}{u}} \right)}}{4} = \frac{a}{2} + \frac{\cos{\left({\color{red}{\left(2 a\right)}} \right)}}{4}$$

Therefore,

$$\int{\left(\frac{1}{2} - \frac{\sin{\left(2 a \right)}}{2}\right)d a} = \frac{a}{2} + \frac{\cos{\left(2 a \right)}}{4}$$

Add the constant of integration:

$$\int{\left(\frac{1}{2} - \frac{\sin{\left(2 a \right)}}{2}\right)d a} = \frac{a}{2} + \frac{\cos{\left(2 a \right)}}{4}+C$$

Answer

$$$\int \left(\frac{1}{2} - \frac{\sin{\left(2 a \right)}}{2}\right)\, da = \left(\frac{a}{2} + \frac{\cos{\left(2 a \right)}}{4}\right) + C$$$A


Please try a new game Rotatly