$$$\frac{1}{2} - \frac{\sin{\left(2 a \right)}}{2}$$$の積分
関連する計算機: 定積分・広義積分計算機
入力内容
$$$\int \left(\frac{1}{2} - \frac{\sin{\left(2 a \right)}}{2}\right)\, da$$$ を求めよ。
解答
項別に積分せよ:
$${\color{red}{\int{\left(\frac{1}{2} - \frac{\sin{\left(2 a \right)}}{2}\right)d a}}} = {\color{red}{\left(\int{\frac{1}{2} d a} - \int{\frac{\sin{\left(2 a \right)}}{2} d a}\right)}}$$
$$$c=\frac{1}{2}$$$ に対して定数則 $$$\int c\, da = a c$$$ を適用する:
$$- \int{\frac{\sin{\left(2 a \right)}}{2} d a} + {\color{red}{\int{\frac{1}{2} d a}}} = - \int{\frac{\sin{\left(2 a \right)}}{2} d a} + {\color{red}{\left(\frac{a}{2}\right)}}$$
定数倍の法則 $$$\int c f{\left(a \right)}\, da = c \int f{\left(a \right)}\, da$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(a \right)} = \sin{\left(2 a \right)}$$$ に対して適用する:
$$\frac{a}{2} - {\color{red}{\int{\frac{\sin{\left(2 a \right)}}{2} d a}}} = \frac{a}{2} - {\color{red}{\left(\frac{\int{\sin{\left(2 a \right)} d a}}{2}\right)}}$$
$$$u=2 a$$$ とする。
すると $$$du=\left(2 a\right)^{\prime }da = 2 da$$$(手順は»で確認できます)、$$$da = \frac{du}{2}$$$ となります。
したがって、
$$\frac{a}{2} - \frac{{\color{red}{\int{\sin{\left(2 a \right)} d a}}}}{2} = \frac{a}{2} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2}$$
定数倍の法則 $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ を、$$$c=\frac{1}{2}$$$ と $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ に対して適用する:
$$\frac{a}{2} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2} = \frac{a}{2} - \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}}{2}$$
正弦関数の不定積分は$$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$です:
$$\frac{a}{2} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{4} = \frac{a}{2} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{4}$$
次のことを思い出してください $$$u=2 a$$$:
$$\frac{a}{2} + \frac{\cos{\left({\color{red}{u}} \right)}}{4} = \frac{a}{2} + \frac{\cos{\left({\color{red}{\left(2 a\right)}} \right)}}{4}$$
したがって、
$$\int{\left(\frac{1}{2} - \frac{\sin{\left(2 a \right)}}{2}\right)d a} = \frac{a}{2} + \frac{\cos{\left(2 a \right)}}{4}$$
積分定数を加える:
$$\int{\left(\frac{1}{2} - \frac{\sin{\left(2 a \right)}}{2}\right)d a} = \frac{a}{2} + \frac{\cos{\left(2 a \right)}}{4}+C$$
解答
$$$\int \left(\frac{1}{2} - \frac{\sin{\left(2 a \right)}}{2}\right)\, da = \left(\frac{a}{2} + \frac{\cos{\left(2 a \right)}}{4}\right) + C$$$A