$$$\frac{1}{2} - \frac{\sin{\left(2 a \right)}}{2}$$$'nin integrali
İlgili hesap makinesi: Belirli ve Uygunsuz İntegral Hesaplayıcı
Girdiniz
Bulun: $$$\int \left(\frac{1}{2} - \frac{\sin{\left(2 a \right)}}{2}\right)\, da$$$.
Çözüm
Her terimin integralini alın:
$${\color{red}{\int{\left(\frac{1}{2} - \frac{\sin{\left(2 a \right)}}{2}\right)d a}}} = {\color{red}{\left(\int{\frac{1}{2} d a} - \int{\frac{\sin{\left(2 a \right)}}{2} d a}\right)}}$$
$$$c=\frac{1}{2}$$$ kullanarak $$$\int c\, da = a c$$$ sabit kuralını uygula:
$$- \int{\frac{\sin{\left(2 a \right)}}{2} d a} + {\color{red}{\int{\frac{1}{2} d a}}} = - \int{\frac{\sin{\left(2 a \right)}}{2} d a} + {\color{red}{\left(\frac{a}{2}\right)}}$$
Sabit katsayı kuralı $$$\int c f{\left(a \right)}\, da = c \int f{\left(a \right)}\, da$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(a \right)} = \sin{\left(2 a \right)}$$$ ile uygula:
$$\frac{a}{2} - {\color{red}{\int{\frac{\sin{\left(2 a \right)}}{2} d a}}} = \frac{a}{2} - {\color{red}{\left(\frac{\int{\sin{\left(2 a \right)} d a}}{2}\right)}}$$
$$$u=2 a$$$ olsun.
Böylece $$$du=\left(2 a\right)^{\prime }da = 2 da$$$ (adımlar » görülebilir) ve $$$da = \frac{du}{2}$$$ elde ederiz.
Dolayısıyla,
$$\frac{a}{2} - \frac{{\color{red}{\int{\sin{\left(2 a \right)} d a}}}}{2} = \frac{a}{2} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2}$$
Sabit katsayı kuralı $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$'i $$$c=\frac{1}{2}$$$ ve $$$f{\left(u \right)} = \sin{\left(u \right)}$$$ ile uygula:
$$\frac{a}{2} - \frac{{\color{red}{\int{\frac{\sin{\left(u \right)}}{2} d u}}}}{2} = \frac{a}{2} - \frac{{\color{red}{\left(\frac{\int{\sin{\left(u \right)} d u}}{2}\right)}}}{2}$$
Sinüsün integrali $$$\int{\sin{\left(u \right)} d u} = - \cos{\left(u \right)}$$$:
$$\frac{a}{2} - \frac{{\color{red}{\int{\sin{\left(u \right)} d u}}}}{4} = \frac{a}{2} - \frac{{\color{red}{\left(- \cos{\left(u \right)}\right)}}}{4}$$
Hatırlayın ki $$$u=2 a$$$:
$$\frac{a}{2} + \frac{\cos{\left({\color{red}{u}} \right)}}{4} = \frac{a}{2} + \frac{\cos{\left({\color{red}{\left(2 a\right)}} \right)}}{4}$$
Dolayısıyla,
$$\int{\left(\frac{1}{2} - \frac{\sin{\left(2 a \right)}}{2}\right)d a} = \frac{a}{2} + \frac{\cos{\left(2 a \right)}}{4}$$
İntegrasyon sabitini ekleyin:
$$\int{\left(\frac{1}{2} - \frac{\sin{\left(2 a \right)}}{2}\right)d a} = \frac{a}{2} + \frac{\cos{\left(2 a \right)}}{4}+C$$
Cevap
$$$\int \left(\frac{1}{2} - \frac{\sin{\left(2 a \right)}}{2}\right)\, da = \left(\frac{a}{2} + \frac{\cos{\left(2 a \right)}}{4}\right) + C$$$A