Integral de $$$\sqrt[3]{x}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int \sqrt[3]{x}\, dx$$$.
Solución
Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=\frac{1}{3}$$$:
$${\color{red}{\int{\sqrt[3]{x} d x}}}={\color{red}{\int{x^{\frac{1}{3}} d x}}}={\color{red}{\frac{x^{\frac{1}{3} + 1}}{\frac{1}{3} + 1}}}={\color{red}{\left(\frac{3 x^{\frac{4}{3}}}{4}\right)}}$$
Por lo tanto,
$$\int{\sqrt[3]{x} d x} = \frac{3 x^{\frac{4}{3}}}{4}$$
Añade la constante de integración:
$$\int{\sqrt[3]{x} d x} = \frac{3 x^{\frac{4}{3}}}{4}+C$$
Respuesta
$$$\int \sqrt[3]{x}\, dx = \frac{3 x^{\frac{4}{3}}}{4} + C$$$A