Integral dari $$$\sqrt[3]{x}$$$

Kalkulator akan menemukan integral/antiturunan dari $$$\sqrt[3]{x}$$$, dengan menampilkan langkah-langkah.

Kalkulator terkait: Kalkulator Integral Tentu dan Tak Wajar

Silakan tulis tanpa diferensial seperti $$$dx$$$, $$$dy$$$, dll.
Biarkan kosong untuk deteksi otomatis.

Jika kalkulator tidak menghitung sesuatu atau Anda menemukan kesalahan, atau Anda memiliki saran/masukan, silakan hubungi kami.

Masukan Anda

Temukan $$$\int \sqrt[3]{x}\, dx$$$.

Solusi

Terapkan aturan pangkat $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ dengan $$$n=\frac{1}{3}$$$:

$${\color{red}{\int{\sqrt[3]{x} d x}}}={\color{red}{\int{x^{\frac{1}{3}} d x}}}={\color{red}{\frac{x^{\frac{1}{3} + 1}}{\frac{1}{3} + 1}}}={\color{red}{\left(\frac{3 x^{\frac{4}{3}}}{4}\right)}}$$

Oleh karena itu,

$$\int{\sqrt[3]{x} d x} = \frac{3 x^{\frac{4}{3}}}{4}$$

Tambahkan konstanta integrasi:

$$\int{\sqrt[3]{x} d x} = \frac{3 x^{\frac{4}{3}}}{4}+C$$

Jawaban

$$$\int \sqrt[3]{x}\, dx = \frac{3 x^{\frac{4}{3}}}{4} + C$$$A


Please try a new game Rotatly