Integral de $$$x \sin{\left(1 \right)}$$$
Calculadora relacionada: Calculadora de integrales definidas e impropias
Tu entrada
Halla $$$\int x \sin{\left(1 \right)}\, dx$$$.
Solución
Aplica la regla del factor constante $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ con $$$c=\sin{\left(1 \right)}$$$ y $$$f{\left(x \right)} = x$$$:
$${\color{red}{\int{x \sin{\left(1 \right)} d x}}} = {\color{red}{\sin{\left(1 \right)} \int{x d x}}}$$
Aplica la regla de la potencia $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ con $$$n=1$$$:
$$\sin{\left(1 \right)} {\color{red}{\int{x d x}}}=\sin{\left(1 \right)} {\color{red}{\frac{x^{1 + 1}}{1 + 1}}}=\sin{\left(1 \right)} {\color{red}{\left(\frac{x^{2}}{2}\right)}}$$
Por lo tanto,
$$\int{x \sin{\left(1 \right)} d x} = \frac{x^{2} \sin{\left(1 \right)}}{2}$$
Añade la constante de integración:
$$\int{x \sin{\left(1 \right)} d x} = \frac{x^{2} \sin{\left(1 \right)}}{2}+C$$
Respuesta
$$$\int x \sin{\left(1 \right)}\, dx = \frac{x^{2} \sin{\left(1 \right)}}{2} + C$$$A