Ολοκλήρωμα της $$$a \epsilon \sigma t^{4}$$$ ως προς $$$t$$$

Ο υπολογιστής θα βρει το ολοκλήρωμα/αντιπαράγωγο της $$$a \epsilon \sigma t^{4}$$$ ως προς $$$t$$$, με εμφάνιση βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int a \epsilon \sigma t^{4}\, dt$$$.

Λύση

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ με $$$c=a \epsilon \sigma$$$ και $$$f{\left(t \right)} = t^{4}$$$:

$${\color{red}{\int{a \epsilon \sigma t^{4} d t}}} = {\color{red}{a \epsilon \sigma \int{t^{4} d t}}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int t^{n}\, dt = \frac{t^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=4$$$:

$$a \epsilon \sigma {\color{red}{\int{t^{4} d t}}}=a \epsilon \sigma {\color{red}{\frac{t^{1 + 4}}{1 + 4}}}=a \epsilon \sigma {\color{red}{\left(\frac{t^{5}}{5}\right)}}$$

Επομένως,

$$\int{a \epsilon \sigma t^{4} d t} = \frac{a \epsilon \sigma t^{5}}{5}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{a \epsilon \sigma t^{4} d t} = \frac{a \epsilon \sigma t^{5}}{5}+C$$

Απάντηση

$$$\int a \epsilon \sigma t^{4}\, dt = \frac{a \epsilon \sigma t^{5}}{5} + C$$$A


Please try a new game Rotatly