Ολοκλήρωμα του $$$- \cos{\left(x \right)}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$- \cos{\left(x \right)}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \left(- \cos{\left(x \right)}\right)\, dx$$$.

Λύση

Εφαρμόστε τον κανόνα του σταθερού πολλαπλασίου $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ με $$$c=-1$$$ και $$$f{\left(x \right)} = \cos{\left(x \right)}$$$:

$${\color{red}{\int{\left(- \cos{\left(x \right)}\right)d x}}} = {\color{red}{\left(- \int{\cos{\left(x \right)} d x}\right)}}$$

Το ολοκλήρωμα του συνημιτόνου είναι $$$\int{\cos{\left(x \right)} d x} = \sin{\left(x \right)}$$$:

$$- {\color{red}{\int{\cos{\left(x \right)} d x}}} = - {\color{red}{\sin{\left(x \right)}}}$$

Επομένως,

$$\int{\left(- \cos{\left(x \right)}\right)d x} = - \sin{\left(x \right)}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\left(- \cos{\left(x \right)}\right)d x} = - \sin{\left(x \right)}+C$$

Απάντηση

$$$\int \left(- \cos{\left(x \right)}\right)\, dx = - \sin{\left(x \right)} + C$$$A


Please try a new game Rotatly