Determinante von $$$\left[\begin{array}{cc}e^{4 t} & e^{- \frac{7 t}{2}}\\4 e^{4 t} & - \frac{7 e^{- \frac{7 t}{2}}}{2}\end{array}\right]$$$

Der Rechner berechnet die Determinante der quadratischen $$$2$$$x$$$2$$$-Matrix $$$\left[\begin{array}{cc}e^{4 t} & e^{- \frac{7 t}{2}}\\4 e^{4 t} & - \frac{7 e^{- \frac{7 t}{2}}}{2}\end{array}\right]$$$, wobei die Rechenschritte angezeigt werden.

Verwandter Rechner: Kofaktormatrix-Rechner

A

Wenn der Rechner etwas nicht berechnet hat oder Sie einen Fehler festgestellt haben oder einen Vorschlag oder Feedback haben, bitte kontaktieren Sie uns.

Ihre Eingabe

Berechne $$$\left|\begin{array}{cc}e^{4 t} & e^{- \frac{7 t}{2}}\\4 e^{4 t} & - \frac{7 e^{- \frac{7 t}{2}}}{2}\end{array}\right|$$$.

Lösung

Die Determinante einer 2x2-Matrix ist $$$\left|\begin{array}{cc}a & b\\c & d\end{array}\right| = a d - b c$$$.

$$$\left|\begin{array}{cc}e^{4 t} & e^{- \frac{7 t}{2}}\\4 e^{4 t} & - \frac{7 e^{- \frac{7 t}{2}}}{2}\end{array}\right| = \left(e^{4 t}\right)\cdot \left(- \frac{7 e^{- \frac{7 t}{2}}}{2}\right) - \left(e^{- \frac{7 t}{2}}\right)\cdot \left(4 e^{4 t}\right) = - \frac{15 e^{\frac{t}{2}}}{2}$$$

Antwort

$$$\left|\begin{array}{cc}e^{4 t} & e^{- \frac{7 t}{2}}\\4 e^{4 t} & - \frac{7 e^{- \frac{7 t}{2}}}{2}\end{array}\right| = - \frac{15 e^{\frac{t}{2}}}{2} = - 7.5 e^{\frac{t}{2}}$$$A


Please try a new game Rotatly