Determinant van $$$\left[\begin{array}{cc}e^{4 t} & e^{- \frac{7 t}{2}}\\4 e^{4 t} & - \frac{7 e^{- \frac{7 t}{2}}}{2}\end{array}\right]$$$

De rekenmachine berekent de determinant van de vierkante $$$2$$$x$$$2$$$-matrix $$$\left[\begin{array}{cc}e^{4 t} & e^{- \frac{7 t}{2}}\\4 e^{4 t} & - \frac{7 e^{- \frac{7 t}{2}}}{2}\end{array}\right]$$$, waarbij de stappen worden getoond.

Gerelateerde rekenmachine: Rekenmachine voor cofactormatrix

A

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bereken $$$\left|\begin{array}{cc}e^{4 t} & e^{- \frac{7 t}{2}}\\4 e^{4 t} & - \frac{7 e^{- \frac{7 t}{2}}}{2}\end{array}\right|$$$.

Oplossing

De determinant van een 2x2-matrix is $$$\left|\begin{array}{cc}a & b\\c & d\end{array}\right| = a d - b c$$$.

$$$\left|\begin{array}{cc}e^{4 t} & e^{- \frac{7 t}{2}}\\4 e^{4 t} & - \frac{7 e^{- \frac{7 t}{2}}}{2}\end{array}\right| = \left(e^{4 t}\right)\cdot \left(- \frac{7 e^{- \frac{7 t}{2}}}{2}\right) - \left(e^{- \frac{7 t}{2}}\right)\cdot \left(4 e^{4 t}\right) = - \frac{15 e^{\frac{t}{2}}}{2}$$$

Antwoord

$$$\left|\begin{array}{cc}e^{4 t} & e^{- \frac{7 t}{2}}\\4 e^{4 t} & - \frac{7 e^{- \frac{7 t}{2}}}{2}\end{array}\right| = - \frac{15 e^{\frac{t}{2}}}{2} = - 7.5 e^{\frac{t}{2}}$$$A


Please try a new game Rotatly