Determinante di $$$\left[\begin{array}{cc}e^{4 t} & e^{- \frac{7 t}{2}}\\4 e^{4 t} & - \frac{7 e^{- \frac{7 t}{2}}}{2}\end{array}\right]$$$

Il calcolatore calcolerà il determinante della matrice quadrata $$$2$$$x$$$2$$$ $$$\left[\begin{array}{cc}e^{4 t} & e^{- \frac{7 t}{2}}\\4 e^{4 t} & - \frac{7 e^{- \frac{7 t}{2}}}{2}\end{array}\right]$$$, mostrando i passaggi.

Calcolatore correlato: Calcolatore della matrice dei cofattori

A

Se il calcolatore non è riuscito a calcolare qualcosa, oppure hai riscontrato un errore, o hai un suggerimento o un feedback, ti preghiamo di contattarci.

Il tuo input

Calcola $$$\left|\begin{array}{cc}e^{4 t} & e^{- \frac{7 t}{2}}\\4 e^{4 t} & - \frac{7 e^{- \frac{7 t}{2}}}{2}\end{array}\right|$$$.

Soluzione

Il determinante di una matrice 2x2 è $$$\left|\begin{array}{cc}a & b\\c & d\end{array}\right| = a d - b c$$$.

$$$\left|\begin{array}{cc}e^{4 t} & e^{- \frac{7 t}{2}}\\4 e^{4 t} & - \frac{7 e^{- \frac{7 t}{2}}}{2}\end{array}\right| = \left(e^{4 t}\right)\cdot \left(- \frac{7 e^{- \frac{7 t}{2}}}{2}\right) - \left(e^{- \frac{7 t}{2}}\right)\cdot \left(4 e^{4 t}\right) = - \frac{15 e^{\frac{t}{2}}}{2}$$$

Risposta

$$$\left|\begin{array}{cc}e^{4 t} & e^{- \frac{7 t}{2}}\\4 e^{4 t} & - \frac{7 e^{- \frac{7 t}{2}}}{2}\end{array}\right| = - \frac{15 e^{\frac{t}{2}}}{2} = - 7.5 e^{\frac{t}{2}}$$$A


Please try a new game Rotatly