Cofaktor-Matrix-Rechner

Der Rechner findet die Matrix der Kofaktoren der gegebenen quadratischen Matrix mit angezeigten Schritten.

Wenn der Taschenrechner etwas nicht berechnet hat oder Sie einen Fehler festgestellt haben oder einen Vorschlag/Feedback haben, schreiben Sie ihn bitte in die Kommentare unten.

Deine Eingabe

Finden Sie die Kofaktormatrix von $$$\left[\begin{array}{ccc}1 & 2 & 3\\4 & 5 & 6\\7 & 8 & 9\end{array}\right]$$$.

Lösung

Die Kofaktormatrix besteht aus allen Kofaktoren der gegebenen Matrix, die nach der Formel $$$C_{ij}=\left(-1\right)^{i+j}M_{ij}$$$ berechnet werden, wobei $$$M_{ij}$$$ der Minor ist, dh die Determinante der Submatrix, die durch das Entfernen von Zeile $$$i$$$ und Spalte $$$j$$$ aus der gegebenen Matrix gebildet wird.

Berechnen Sie alle Kofaktoren:

$$$C_{11} = \left(-1\right)^{1 + 1} \left|\begin{array}{cc}5 & 6\\8 & 9\end{array}\right| = -3$$$ (für Schritte siehe Determinantenrechner).

$$$C_{12} = \left(-1\right)^{1 + 2} \left|\begin{array}{cc}4 & 6\\7 & 9\end{array}\right| = 6$$$ (für Schritte siehe Determinantenrechner).

$$$C_{13} = \left(-1\right)^{1 + 3} \left|\begin{array}{cc}4 & 5\\7 & 8\end{array}\right| = -3$$$ (für Schritte siehe Determinantenrechner).

$$$C_{21} = \left(-1\right)^{2 + 1} \left|\begin{array}{cc}2 & 3\\8 & 9\end{array}\right| = 6$$$ (für Schritte siehe Determinantenrechner).

$$$C_{22} = \left(-1\right)^{2 + 2} \left|\begin{array}{cc}1 & 3\\7 & 9\end{array}\right| = -12$$$ (für Schritte siehe Determinantenrechner).

$$$C_{23} = \left(-1\right)^{2 + 3} \left|\begin{array}{cc}1 & 2\\7 & 8\end{array}\right| = 6$$$ (für Schritte siehe Determinantenrechner).

$$$C_{31} = \left(-1\right)^{3 + 1} \left|\begin{array}{cc}2 & 3\\5 & 6\end{array}\right| = -3$$$ (für Schritte siehe Determinantenrechner).

$$$C_{32} = \left(-1\right)^{3 + 2} \left|\begin{array}{cc}1 & 3\\4 & 6\end{array}\right| = 6$$$ (für Schritte siehe Determinantenrechner).

$$$C_{33} = \left(-1\right)^{3 + 3} \left|\begin{array}{cc}1 & 2\\4 & 5\end{array}\right| = -3$$$ (für Schritte siehe Determinantenrechner).

Somit ist die Kofaktormatrix $$$\left[\begin{array}{ccc}-3 & 6 & -3\\6 & -12 & 6\\-3 & 6 & -3\end{array}\right]$$$.

Antwort

Die Kofaktormatrix ist die $$$\left[\begin{array}{ccc}-3 & 6 & -3\\6 & -12 & 6\\-3 & 6 & -3\end{array}\right]$$$A.