Integral von $$$12 int_{0}^{6} \sqrt{36 - x^{2}}$$$ nach $$$x$$$

Der Rechner findet das Integral/die Stammfunktion von $$$12 int_{0}^{6} \sqrt{36 - x^{2}}$$$ nach $$$x$$$ und zeigt die Schritte an.

Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale

Bitte schreiben Sie ohne Differentiale wie $$$dx$$$, $$$dy$$$ usw.
Für automatische Erkennung leer lassen.

Wenn der Rechner etwas nicht berechnet hat oder Sie einen Fehler festgestellt haben oder einen Vorschlag oder Feedback haben, bitte kontaktieren Sie uns.

Ihre Eingabe

Bestimme $$$\int 12 int_{0}^{6} \sqrt{36 - x^{2}}\, dx$$$.

Lösung

Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=12 int_{0}^{6}$$$ und $$$f{\left(x \right)} = \sqrt{36 - x^{2}}$$$ an:

$${\color{red}{\int{12 int_{0}^{6} \sqrt{36 - x^{2}} d x}}} = {\color{red}{\left(12 int_{0}^{6} \int{\sqrt{36 - x^{2}} d x}\right)}}$$

Sei $$$x=6 \sin{\left(u \right)}$$$.

Dann $$$dx=\left(6 \sin{\left(u \right)}\right)^{\prime }du = 6 \cos{\left(u \right)} du$$$ (die Schritte sind » zu sehen).

Somit folgt, dass $$$u=\operatorname{asin}{\left(\frac{x}{6} \right)}$$$.

Also,

$$$\sqrt{36 - x^{2}} = \sqrt{36 - 36 \sin^{2}{\left( u \right)}}$$$

Verwenden Sie die Identität $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$:

$$$\sqrt{36 - 36 \sin^{2}{\left( u \right)}}=6 \sqrt{1 - \sin^{2}{\left( u \right)}}=6 \sqrt{\cos^{2}{\left( u \right)}}$$$

Setzen wir $$$\cos{\left( u \right)} \ge 0$$$ voraus, so erhalten wir Folgendes:

$$$6 \sqrt{\cos^{2}{\left( u \right)}} = 6 \cos{\left( u \right)}$$$

Somit,

$$12 int_{0}^{6} {\color{red}{\int{\sqrt{36 - x^{2}} d x}}} = 12 int_{0}^{6} {\color{red}{\int{36 \cos^{2}{\left(u \right)} d u}}}$$

Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=36$$$ und $$$f{\left(u \right)} = \cos^{2}{\left(u \right)}$$$ an:

$$12 int_{0}^{6} {\color{red}{\int{36 \cos^{2}{\left(u \right)} d u}}} = 12 int_{0}^{6} {\color{red}{\left(36 \int{\cos^{2}{\left(u \right)} d u}\right)}}$$

Wende die Potenzreduktionsformel $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ mit $$$\alpha= u $$$ an:

$$432 int_{0}^{6} {\color{red}{\int{\cos^{2}{\left(u \right)} d u}}} = 432 int_{0}^{6} {\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}}$$

Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(u \right)} = \cos{\left(2 u \right)} + 1$$$ an:

$$432 int_{0}^{6} {\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}} = 432 int_{0}^{6} {\color{red}{\left(\frac{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}{2}\right)}}$$

Gliedweise integrieren:

$$216 int_{0}^{6} {\color{red}{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}} = 216 int_{0}^{6} {\color{red}{\left(\int{1 d u} + \int{\cos{\left(2 u \right)} d u}\right)}}$$

Wenden Sie die Konstantenregel $$$\int c\, du = c u$$$ mit $$$c=1$$$ an:

$$216 int_{0}^{6} \left(\int{\cos{\left(2 u \right)} d u} + {\color{red}{\int{1 d u}}}\right) = 216 int_{0}^{6} \left(\int{\cos{\left(2 u \right)} d u} + {\color{red}{u}}\right)$$

Sei $$$v=2 u$$$.

Dann $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (die Schritte sind » zu sehen), und es gilt $$$du = \frac{dv}{2}$$$.

Das Integral lässt sich umschreiben als

$$216 int_{0}^{6} \left(u + {\color{red}{\int{\cos{\left(2 u \right)} d u}}}\right) = 216 int_{0}^{6} \left(u + {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}\right)$$

Wende die Konstantenfaktorregel $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(v \right)} = \cos{\left(v \right)}$$$ an:

$$216 int_{0}^{6} \left(u + {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}\right) = 216 int_{0}^{6} \left(u + {\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}\right)$$

Das Integral des Kosinus ist $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$:

$$216 int_{0}^{6} \left(u + \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{2}\right) = 216 int_{0}^{6} \left(u + \frac{{\color{red}{\sin{\left(v \right)}}}}{2}\right)$$

Zur Erinnerung: $$$v=2 u$$$:

$$216 int_{0}^{6} \left(u + \frac{\sin{\left({\color{red}{v}} \right)}}{2}\right) = 216 int_{0}^{6} \left(u + \frac{\sin{\left({\color{red}{\left(2 u\right)}} \right)}}{2}\right)$$

Zur Erinnerung: $$$u=\operatorname{asin}{\left(\frac{x}{6} \right)}$$$:

$$216 int_{0}^{6} \left(\frac{\sin{\left(2 {\color{red}{u}} \right)}}{2} + {\color{red}{u}}\right) = 216 int_{0}^{6} \left(\frac{\sin{\left(2 {\color{red}{\operatorname{asin}{\left(\frac{x}{6} \right)}}} \right)}}{2} + {\color{red}{\operatorname{asin}{\left(\frac{x}{6} \right)}}}\right)$$

Daher,

$$\int{12 int_{0}^{6} \sqrt{36 - x^{2}} d x} = 216 int_{0}^{6} \left(\frac{\sin{\left(2 \operatorname{asin}{\left(\frac{x}{6} \right)} \right)}}{2} + \operatorname{asin}{\left(\frac{x}{6} \right)}\right)$$

Verwenden Sie die Formeln $$$\sin{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\sin{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\cos{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 1 - 2 \alpha^{2}$$$, $$$\cos{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, $$$\sinh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha^{2} + 1}$$$, $$$\sinh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha - 1} \sqrt{\alpha + 1}$$$, $$$\cosh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} + 1$$$, $$$\cosh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, um den Ausdruck zu vereinfachen:

$$\int{12 int_{0}^{6} \sqrt{36 - x^{2}} d x} = 216 int_{0}^{6} \left(\frac{x \sqrt{1 - \frac{x^{2}}{36}}}{6} + \operatorname{asin}{\left(\frac{x}{6} \right)}\right)$$

Weiter vereinfachen:

$$\int{12 int_{0}^{6} \sqrt{36 - x^{2}} d x} = 6 int_{0}^{6} \left(x \sqrt{36 - x^{2}} + 36 \operatorname{asin}{\left(\frac{x}{6} \right)}\right)$$

Fügen Sie die Integrationskonstante hinzu:

$$\int{12 int_{0}^{6} \sqrt{36 - x^{2}} d x} = 6 int_{0}^{6} \left(x \sqrt{36 - x^{2}} + 36 \operatorname{asin}{\left(\frac{x}{6} \right)}\right)+C$$

Antwort

$$$\int 12 int_{0}^{6} \sqrt{36 - x^{2}}\, dx = 6 int_{0}^{6} \left(x \sqrt{36 - x^{2}} + 36 \operatorname{asin}{\left(\frac{x}{6} \right)}\right) + C$$$A


Please try a new game Rotatly