Intégrale de $$$12 int_{0}^{6} \sqrt{36 - x^{2}}$$$ par rapport à $$$x$$$

La calculatrice trouvera l’intégrale/primitive de $$$12 int_{0}^{6} \sqrt{36 - x^{2}}$$$ par rapport à $$$x$$$, avec les étapes affichées.

Calculatrice associée: Calculatrice d’intégrales définies et impropres

Veuillez écrire sans différentielles telles que $$$dx$$$, $$$dy$$$, etc.
Laissez vide pour l'autodétection.

Si le calculateur n'a pas pu calculer quelque chose, si vous avez identifié une erreur, ou si vous avez une suggestion ou un commentaire, veuillez nous contacter.

Votre saisie

Déterminez $$$\int 12 int_{0}^{6} \sqrt{36 - x^{2}}\, dx$$$.

Solution

Appliquez la règle du facteur constant $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ avec $$$c=12 int_{0}^{6}$$$ et $$$f{\left(x \right)} = \sqrt{36 - x^{2}}$$$ :

$${\color{red}{\int{12 int_{0}^{6} \sqrt{36 - x^{2}} d x}}} = {\color{red}{\left(12 int_{0}^{6} \int{\sqrt{36 - x^{2}} d x}\right)}}$$

Soit $$$x=6 \sin{\left(u \right)}$$$.

Alors $$$dx=\left(6 \sin{\left(u \right)}\right)^{\prime }du = 6 \cos{\left(u \right)} du$$$ (les étapes peuvent être vues »).

De plus, il s'ensuit que $$$u=\operatorname{asin}{\left(\frac{x}{6} \right)}$$$.

Ainsi,

$$$\sqrt{36 - x^{2}} = \sqrt{36 - 36 \sin^{2}{\left( u \right)}}$$$

Utilisez l'identité $$$1 - \sin^{2}{\left( u \right)} = \cos^{2}{\left( u \right)}$$$ :

$$$\sqrt{36 - 36 \sin^{2}{\left( u \right)}}=6 \sqrt{1 - \sin^{2}{\left( u \right)}}=6 \sqrt{\cos^{2}{\left( u \right)}}$$$

En supposant que $$$\cos{\left( u \right)} \ge 0$$$, nous obtenons ce qui suit :

$$$6 \sqrt{\cos^{2}{\left( u \right)}} = 6 \cos{\left( u \right)}$$$

L’intégrale peut se réécrire sous la forme

$$12 int_{0}^{6} {\color{red}{\int{\sqrt{36 - x^{2}} d x}}} = 12 int_{0}^{6} {\color{red}{\int{36 \cos^{2}{\left(u \right)} d u}}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=36$$$ et $$$f{\left(u \right)} = \cos^{2}{\left(u \right)}$$$ :

$$12 int_{0}^{6} {\color{red}{\int{36 \cos^{2}{\left(u \right)} d u}}} = 12 int_{0}^{6} {\color{red}{\left(36 \int{\cos^{2}{\left(u \right)} d u}\right)}}$$

Appliquer la formule de réduction de puissance $$$\cos^{2}{\left(\alpha \right)} = \frac{\cos{\left(2 \alpha \right)}}{2} + \frac{1}{2}$$$ avec $$$\alpha= u $$$:

$$432 int_{0}^{6} {\color{red}{\int{\cos^{2}{\left(u \right)} d u}}} = 432 int_{0}^{6} {\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}}$$

Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(u \right)} = \cos{\left(2 u \right)} + 1$$$ :

$$432 int_{0}^{6} {\color{red}{\int{\left(\frac{\cos{\left(2 u \right)}}{2} + \frac{1}{2}\right)d u}}} = 432 int_{0}^{6} {\color{red}{\left(\frac{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}{2}\right)}}$$

Intégrez terme à terme:

$$216 int_{0}^{6} {\color{red}{\int{\left(\cos{\left(2 u \right)} + 1\right)d u}}} = 216 int_{0}^{6} {\color{red}{\left(\int{1 d u} + \int{\cos{\left(2 u \right)} d u}\right)}}$$

Appliquez la règle de la constante $$$\int c\, du = c u$$$ avec $$$c=1$$$:

$$216 int_{0}^{6} \left(\int{\cos{\left(2 u \right)} d u} + {\color{red}{\int{1 d u}}}\right) = 216 int_{0}^{6} \left(\int{\cos{\left(2 u \right)} d u} + {\color{red}{u}}\right)$$

Soit $$$v=2 u$$$.

Alors $$$dv=\left(2 u\right)^{\prime }du = 2 du$$$ (les étapes peuvent être vues »), et nous obtenons $$$du = \frac{dv}{2}$$$.

Ainsi,

$$216 int_{0}^{6} \left(u + {\color{red}{\int{\cos{\left(2 u \right)} d u}}}\right) = 216 int_{0}^{6} \left(u + {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}\right)$$

Appliquez la règle du facteur constant $$$\int c f{\left(v \right)}\, dv = c \int f{\left(v \right)}\, dv$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(v \right)} = \cos{\left(v \right)}$$$ :

$$216 int_{0}^{6} \left(u + {\color{red}{\int{\frac{\cos{\left(v \right)}}{2} d v}}}\right) = 216 int_{0}^{6} \left(u + {\color{red}{\left(\frac{\int{\cos{\left(v \right)} d v}}{2}\right)}}\right)$$

L’intégrale du cosinus est $$$\int{\cos{\left(v \right)} d v} = \sin{\left(v \right)}$$$ :

$$216 int_{0}^{6} \left(u + \frac{{\color{red}{\int{\cos{\left(v \right)} d v}}}}{2}\right) = 216 int_{0}^{6} \left(u + \frac{{\color{red}{\sin{\left(v \right)}}}}{2}\right)$$

Rappelons que $$$v=2 u$$$ :

$$216 int_{0}^{6} \left(u + \frac{\sin{\left({\color{red}{v}} \right)}}{2}\right) = 216 int_{0}^{6} \left(u + \frac{\sin{\left({\color{red}{\left(2 u\right)}} \right)}}{2}\right)$$

Rappelons que $$$u=\operatorname{asin}{\left(\frac{x}{6} \right)}$$$ :

$$216 int_{0}^{6} \left(\frac{\sin{\left(2 {\color{red}{u}} \right)}}{2} + {\color{red}{u}}\right) = 216 int_{0}^{6} \left(\frac{\sin{\left(2 {\color{red}{\operatorname{asin}{\left(\frac{x}{6} \right)}}} \right)}}{2} + {\color{red}{\operatorname{asin}{\left(\frac{x}{6} \right)}}}\right)$$

Par conséquent,

$$\int{12 int_{0}^{6} \sqrt{36 - x^{2}} d x} = 216 int_{0}^{6} \left(\frac{\sin{\left(2 \operatorname{asin}{\left(\frac{x}{6} \right)} \right)}}{2} + \operatorname{asin}{\left(\frac{x}{6} \right)}\right)$$

En utilisant les formules $$$\sin{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\sin{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{1 - \alpha^{2}}$$$, $$$\cos{\left(2 \operatorname{asin}{\left(\alpha \right)} \right)} = 1 - 2 \alpha^{2}$$$, $$$\cos{\left(2 \operatorname{acos}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, $$$\sinh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha^{2} + 1}$$$, $$$\sinh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha \sqrt{\alpha - 1} \sqrt{\alpha + 1}$$$, $$$\cosh{\left(2 \operatorname{asinh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} + 1$$$, $$$\cosh{\left(2 \operatorname{acosh}{\left(\alpha \right)} \right)} = 2 \alpha^{2} - 1$$$, simplifiez l'expression :

$$\int{12 int_{0}^{6} \sqrt{36 - x^{2}} d x} = 216 int_{0}^{6} \left(\frac{x \sqrt{1 - \frac{x^{2}}{36}}}{6} + \operatorname{asin}{\left(\frac{x}{6} \right)}\right)$$

Simplifier davantage :

$$\int{12 int_{0}^{6} \sqrt{36 - x^{2}} d x} = 6 int_{0}^{6} \left(x \sqrt{36 - x^{2}} + 36 \operatorname{asin}{\left(\frac{x}{6} \right)}\right)$$

Ajouter la constante d'intégration :

$$\int{12 int_{0}^{6} \sqrt{36 - x^{2}} d x} = 6 int_{0}^{6} \left(x \sqrt{36 - x^{2}} + 36 \operatorname{asin}{\left(\frac{x}{6} \right)}\right)+C$$

Réponse

$$$\int 12 int_{0}^{6} \sqrt{36 - x^{2}}\, dx = 6 int_{0}^{6} \left(x \sqrt{36 - x^{2}} + 36 \operatorname{asin}{\left(\frac{x}{6} \right)}\right) + C$$$A


Please try a new game Rotatly