Integral von $$$\frac{\sin{\left(x \right)}}{1 - \cos^{2}{\left(x \right)}}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{\sin{\left(x \right)}}{1 - \cos^{2}{\left(x \right)}}\, dx$$$.
Lösung
Sei $$$u=\cos{\left(x \right)}$$$.
Dann $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (die Schritte sind » zu sehen), und es gilt $$$\sin{\left(x \right)} dx = - du$$$.
Das Integral wird zu
$${\color{red}{\int{\frac{\sin{\left(x \right)}}{1 - \cos^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{u^{2} - 1} d u}}}$$
Partialbruchzerlegung durchführen (die Schritte sind » zu sehen):
$${\color{red}{\int{\frac{1}{u^{2} - 1} d u}}} = {\color{red}{\int{\left(- \frac{1}{2 \left(u + 1\right)} + \frac{1}{2 \left(u - 1\right)}\right)d u}}}$$
Gliedweise integrieren:
$${\color{red}{\int{\left(- \frac{1}{2 \left(u + 1\right)} + \frac{1}{2 \left(u - 1\right)}\right)d u}}} = {\color{red}{\left(\int{\frac{1}{2 \left(u - 1\right)} d u} - \int{\frac{1}{2 \left(u + 1\right)} d u}\right)}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(u \right)} = \frac{1}{u - 1}$$$ an:
$$- \int{\frac{1}{2 \left(u + 1\right)} d u} + {\color{red}{\int{\frac{1}{2 \left(u - 1\right)} d u}}} = - \int{\frac{1}{2 \left(u + 1\right)} d u} + {\color{red}{\left(\frac{\int{\frac{1}{u - 1} d u}}{2}\right)}}$$
Sei $$$v=u - 1$$$.
Dann $$$dv=\left(u - 1\right)^{\prime }du = 1 du$$$ (die Schritte sind » zu sehen), und es gilt $$$du = dv$$$.
Somit,
$$- \int{\frac{1}{2 \left(u + 1\right)} d u} + \frac{{\color{red}{\int{\frac{1}{u - 1} d u}}}}{2} = - \int{\frac{1}{2 \left(u + 1\right)} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$
Das Integral von $$$\frac{1}{v}$$$ ist $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$- \int{\frac{1}{2 \left(u + 1\right)} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = - \int{\frac{1}{2 \left(u + 1\right)} d u} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$
Zur Erinnerung: $$$v=u - 1$$$:
$$\frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(u + 1\right)} d u} = \frac{\ln{\left(\left|{{\color{red}{\left(u - 1\right)}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(u + 1\right)} d u}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(u \right)} = \frac{1}{u + 1}$$$ an:
$$\frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - {\color{red}{\int{\frac{1}{2 \left(u + 1\right)} d u}}} = \frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - {\color{red}{\left(\frac{\int{\frac{1}{u + 1} d u}}{2}\right)}}$$
Sei $$$v=u + 1$$$.
Dann $$$dv=\left(u + 1\right)^{\prime }du = 1 du$$$ (die Schritte sind » zu sehen), und es gilt $$$du = dv$$$.
Somit,
$$\frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u + 1} d u}}}}{2} = \frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$
Das Integral von $$$\frac{1}{v}$$$ ist $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:
$$\frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = \frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$
Zur Erinnerung: $$$v=u + 1$$$:
$$\frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} = \frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(u + 1\right)}}}\right| \right)}}{2}$$
Zur Erinnerung: $$$u=\cos{\left(x \right)}$$$:
$$\frac{\ln{\left(\left|{-1 + {\color{red}{u}}}\right| \right)}}{2} - \frac{\ln{\left(\left|{1 + {\color{red}{u}}}\right| \right)}}{2} = \frac{\ln{\left(\left|{-1 + {\color{red}{\cos{\left(x \right)}}}}\right| \right)}}{2} - \frac{\ln{\left(\left|{1 + {\color{red}{\cos{\left(x \right)}}}}\right| \right)}}{2}$$
Daher,
$$\int{\frac{\sin{\left(x \right)}}{1 - \cos^{2}{\left(x \right)}} d x} = \frac{\ln{\left(\left|{\cos{\left(x \right)} - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{\cos{\left(x \right)} + 1}\right| \right)}}{2}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{\sin{\left(x \right)}}{1 - \cos^{2}{\left(x \right)}} d x} = \frac{\ln{\left(\left|{\cos{\left(x \right)} - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{\cos{\left(x \right)} + 1}\right| \right)}}{2}+C$$
Antwort
$$$\int \frac{\sin{\left(x \right)}}{1 - \cos^{2}{\left(x \right)}}\, dx = \left(\frac{\ln\left(\left|{\cos{\left(x \right)} - 1}\right|\right)}{2} - \frac{\ln\left(\left|{\cos{\left(x \right)} + 1}\right|\right)}{2}\right) + C$$$A