Integral de $$$\frac{\sin{\left(x \right)}}{1 - \cos^{2}{\left(x \right)}}$$$

La calculadora encontrará la integral/antiderivada de $$$\frac{\sin{\left(x \right)}}{1 - \cos^{2}{\left(x \right)}}$$$, mostrando los pasos.

Calculadora relacionada: Calculadora de integrales definidas e impropias

Por favor, escriba sin diferenciales como $$$dx$$$, $$$dy$$$, etc.
Deje en blanco para la detección automática.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\int \frac{\sin{\left(x \right)}}{1 - \cos^{2}{\left(x \right)}}\, dx$$$.

Solución

Sea $$$u=\cos{\left(x \right)}$$$.

Entonces $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (los pasos pueden verse »), y obtenemos que $$$\sin{\left(x \right)} dx = - du$$$.

La integral se convierte en

$${\color{red}{\int{\frac{\sin{\left(x \right)}}{1 - \cos^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{u^{2} - 1} d u}}}$$

Realizar la descomposición en fracciones parciales (los pasos pueden verse »):

$${\color{red}{\int{\frac{1}{u^{2} - 1} d u}}} = {\color{red}{\int{\left(- \frac{1}{2 \left(u + 1\right)} + \frac{1}{2 \left(u - 1\right)}\right)d u}}}$$

Integra término a término:

$${\color{red}{\int{\left(- \frac{1}{2 \left(u + 1\right)} + \frac{1}{2 \left(u - 1\right)}\right)d u}}} = {\color{red}{\left(\int{\frac{1}{2 \left(u - 1\right)} d u} - \int{\frac{1}{2 \left(u + 1\right)} d u}\right)}}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(u \right)} = \frac{1}{u - 1}$$$:

$$- \int{\frac{1}{2 \left(u + 1\right)} d u} + {\color{red}{\int{\frac{1}{2 \left(u - 1\right)} d u}}} = - \int{\frac{1}{2 \left(u + 1\right)} d u} + {\color{red}{\left(\frac{\int{\frac{1}{u - 1} d u}}{2}\right)}}$$

Sea $$$v=u - 1$$$.

Entonces $$$dv=\left(u - 1\right)^{\prime }du = 1 du$$$ (los pasos pueden verse »), y obtenemos que $$$du = dv$$$.

Por lo tanto,

$$- \int{\frac{1}{2 \left(u + 1\right)} d u} + \frac{{\color{red}{\int{\frac{1}{u - 1} d u}}}}{2} = - \int{\frac{1}{2 \left(u + 1\right)} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$

La integral de $$$\frac{1}{v}$$$ es $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$- \int{\frac{1}{2 \left(u + 1\right)} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = - \int{\frac{1}{2 \left(u + 1\right)} d u} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$

Recordemos que $$$v=u - 1$$$:

$$\frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(u + 1\right)} d u} = \frac{\ln{\left(\left|{{\color{red}{\left(u - 1\right)}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(u + 1\right)} d u}$$

Aplica la regla del factor constante $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ con $$$c=\frac{1}{2}$$$ y $$$f{\left(u \right)} = \frac{1}{u + 1}$$$:

$$\frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - {\color{red}{\int{\frac{1}{2 \left(u + 1\right)} d u}}} = \frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - {\color{red}{\left(\frac{\int{\frac{1}{u + 1} d u}}{2}\right)}}$$

Sea $$$v=u + 1$$$.

Entonces $$$dv=\left(u + 1\right)^{\prime }du = 1 du$$$ (los pasos pueden verse »), y obtenemos que $$$du = dv$$$.

Entonces,

$$\frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u + 1} d u}}}}{2} = \frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$

La integral de $$$\frac{1}{v}$$$ es $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$:

$$\frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = \frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$

Recordemos que $$$v=u + 1$$$:

$$\frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} = \frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(u + 1\right)}}}\right| \right)}}{2}$$

Recordemos que $$$u=\cos{\left(x \right)}$$$:

$$\frac{\ln{\left(\left|{-1 + {\color{red}{u}}}\right| \right)}}{2} - \frac{\ln{\left(\left|{1 + {\color{red}{u}}}\right| \right)}}{2} = \frac{\ln{\left(\left|{-1 + {\color{red}{\cos{\left(x \right)}}}}\right| \right)}}{2} - \frac{\ln{\left(\left|{1 + {\color{red}{\cos{\left(x \right)}}}}\right| \right)}}{2}$$

Por lo tanto,

$$\int{\frac{\sin{\left(x \right)}}{1 - \cos^{2}{\left(x \right)}} d x} = \frac{\ln{\left(\left|{\cos{\left(x \right)} - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{\cos{\left(x \right)} + 1}\right| \right)}}{2}$$

Añade la constante de integración:

$$\int{\frac{\sin{\left(x \right)}}{1 - \cos^{2}{\left(x \right)}} d x} = \frac{\ln{\left(\left|{\cos{\left(x \right)} - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{\cos{\left(x \right)} + 1}\right| \right)}}{2}+C$$

Respuesta

$$$\int \frac{\sin{\left(x \right)}}{1 - \cos^{2}{\left(x \right)}}\, dx = \left(\frac{\ln\left(\left|{\cos{\left(x \right)} - 1}\right|\right)}{2} - \frac{\ln\left(\left|{\cos{\left(x \right)} + 1}\right|\right)}{2}\right) + C$$$A


Please try a new game Rotatly