Intégrale de $$$\frac{\sin{\left(x \right)}}{1 - \cos^{2}{\left(x \right)}}$$$
Calculatrice associée: Calculatrice d’intégrales définies et impropres
Votre saisie
Déterminez $$$\int \frac{\sin{\left(x \right)}}{1 - \cos^{2}{\left(x \right)}}\, dx$$$.
Solution
Soit $$$u=\cos{\left(x \right)}$$$.
Alors $$$du=\left(\cos{\left(x \right)}\right)^{\prime }dx = - \sin{\left(x \right)} dx$$$ (les étapes peuvent être vues »), et nous obtenons $$$\sin{\left(x \right)} dx = - du$$$.
Donc,
$${\color{red}{\int{\frac{\sin{\left(x \right)}}{1 - \cos^{2}{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{u^{2} - 1} d u}}}$$
Effectuer la décomposition en fractions partielles (les étapes peuvent être vues »):
$${\color{red}{\int{\frac{1}{u^{2} - 1} d u}}} = {\color{red}{\int{\left(- \frac{1}{2 \left(u + 1\right)} + \frac{1}{2 \left(u - 1\right)}\right)d u}}}$$
Intégrez terme à terme:
$${\color{red}{\int{\left(- \frac{1}{2 \left(u + 1\right)} + \frac{1}{2 \left(u - 1\right)}\right)d u}}} = {\color{red}{\left(\int{\frac{1}{2 \left(u - 1\right)} d u} - \int{\frac{1}{2 \left(u + 1\right)} d u}\right)}}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(u \right)} = \frac{1}{u - 1}$$$ :
$$- \int{\frac{1}{2 \left(u + 1\right)} d u} + {\color{red}{\int{\frac{1}{2 \left(u - 1\right)} d u}}} = - \int{\frac{1}{2 \left(u + 1\right)} d u} + {\color{red}{\left(\frac{\int{\frac{1}{u - 1} d u}}{2}\right)}}$$
Soit $$$v=u - 1$$$.
Alors $$$dv=\left(u - 1\right)^{\prime }du = 1 du$$$ (les étapes peuvent être vues »), et nous obtenons $$$du = dv$$$.
L’intégrale peut être réécrite sous la forme
$$- \int{\frac{1}{2 \left(u + 1\right)} d u} + \frac{{\color{red}{\int{\frac{1}{u - 1} d u}}}}{2} = - \int{\frac{1}{2 \left(u + 1\right)} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$
L’intégrale de $$$\frac{1}{v}$$$ est $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$ :
$$- \int{\frac{1}{2 \left(u + 1\right)} d u} + \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = - \int{\frac{1}{2 \left(u + 1\right)} d u} + \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$
Rappelons que $$$v=u - 1$$$ :
$$\frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(u + 1\right)} d u} = \frac{\ln{\left(\left|{{\color{red}{\left(u - 1\right)}}}\right| \right)}}{2} - \int{\frac{1}{2 \left(u + 1\right)} d u}$$
Appliquez la règle du facteur constant $$$\int c f{\left(u \right)}\, du = c \int f{\left(u \right)}\, du$$$ avec $$$c=\frac{1}{2}$$$ et $$$f{\left(u \right)} = \frac{1}{u + 1}$$$ :
$$\frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - {\color{red}{\int{\frac{1}{2 \left(u + 1\right)} d u}}} = \frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - {\color{red}{\left(\frac{\int{\frac{1}{u + 1} d u}}{2}\right)}}$$
Soit $$$v=u + 1$$$.
Alors $$$dv=\left(u + 1\right)^{\prime }du = 1 du$$$ (les étapes peuvent être vues »), et nous obtenons $$$du = dv$$$.
L’intégrale peut être réécrite sous la forme
$$\frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{u + 1} d u}}}}{2} = \frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2}$$
L’intégrale de $$$\frac{1}{v}$$$ est $$$\int{\frac{1}{v} d v} = \ln{\left(\left|{v}\right| \right)}$$$ :
$$\frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - \frac{{\color{red}{\int{\frac{1}{v} d v}}}}{2} = \frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - \frac{{\color{red}{\ln{\left(\left|{v}\right| \right)}}}}{2}$$
Rappelons que $$$v=u + 1$$$ :
$$\frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{v}}}\right| \right)}}{2} = \frac{\ln{\left(\left|{u - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{{\color{red}{\left(u + 1\right)}}}\right| \right)}}{2}$$
Rappelons que $$$u=\cos{\left(x \right)}$$$ :
$$\frac{\ln{\left(\left|{-1 + {\color{red}{u}}}\right| \right)}}{2} - \frac{\ln{\left(\left|{1 + {\color{red}{u}}}\right| \right)}}{2} = \frac{\ln{\left(\left|{-1 + {\color{red}{\cos{\left(x \right)}}}}\right| \right)}}{2} - \frac{\ln{\left(\left|{1 + {\color{red}{\cos{\left(x \right)}}}}\right| \right)}}{2}$$
Par conséquent,
$$\int{\frac{\sin{\left(x \right)}}{1 - \cos^{2}{\left(x \right)}} d x} = \frac{\ln{\left(\left|{\cos{\left(x \right)} - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{\cos{\left(x \right)} + 1}\right| \right)}}{2}$$
Ajouter la constante d'intégration :
$$\int{\frac{\sin{\left(x \right)}}{1 - \cos^{2}{\left(x \right)}} d x} = \frac{\ln{\left(\left|{\cos{\left(x \right)} - 1}\right| \right)}}{2} - \frac{\ln{\left(\left|{\cos{\left(x \right)} + 1}\right| \right)}}{2}+C$$
Réponse
$$$\int \frac{\sin{\left(x \right)}}{1 - \cos^{2}{\left(x \right)}}\, dx = \left(\frac{\ln\left(\left|{\cos{\left(x \right)} - 1}\right|\right)}{2} - \frac{\ln\left(\left|{\cos{\left(x \right)} + 1}\right|\right)}{2}\right) + C$$$A