Integral von $$$\theta \sin{\left(2 \right)}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \theta \sin{\left(2 \right)}\, d\theta$$$.
Lösung
Wende die Konstantenfaktorregel $$$\int c f{\left(\theta \right)}\, d\theta = c \int f{\left(\theta \right)}\, d\theta$$$ mit $$$c=\sin{\left(2 \right)}$$$ und $$$f{\left(\theta \right)} = \theta$$$ an:
$${\color{red}{\int{\theta \sin{\left(2 \right)} d \theta}}} = {\color{red}{\sin{\left(2 \right)} \int{\theta d \theta}}}$$
Wenden Sie die Potenzregel $$$\int \theta^{n}\, d\theta = \frac{\theta^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=1$$$ an:
$$\sin{\left(2 \right)} {\color{red}{\int{\theta d \theta}}}=\sin{\left(2 \right)} {\color{red}{\frac{\theta^{1 + 1}}{1 + 1}}}=\sin{\left(2 \right)} {\color{red}{\left(\frac{\theta^{2}}{2}\right)}}$$
Daher,
$$\int{\theta \sin{\left(2 \right)} d \theta} = \frac{\theta^{2} \sin{\left(2 \right)}}{2}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\theta \sin{\left(2 \right)} d \theta} = \frac{\theta^{2} \sin{\left(2 \right)}}{2}+C$$
Antwort
$$$\int \theta \sin{\left(2 \right)}\, d\theta = \frac{\theta^{2} \sin{\left(2 \right)}}{2} + C$$$A