Integral von $$$\frac{\sqrt{\tan{\left(x \right)}}}{\sin{\left(x \right)} \cos{\left(x \right)}}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{\sqrt{\tan{\left(x \right)}}}{\sin{\left(x \right)} \cos{\left(x \right)}}\, dx$$$.
Lösung
Sei $$$u=\tan{\left(x \right)}$$$.
Dann gelten $$$x=\operatorname{atan}{\left(u \right)}$$$ und $$$dx=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$ (die Schritte sind » zu sehen).
Das Integral wird zu
$${\color{red}{\int{\frac{\sqrt{\tan{\left(x \right)}}}{\sin{\left(x \right)} \cos{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}$$
Wenden Sie die Potenzregel $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=- \frac{1}{2}$$$ an:
$${\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}={\color{red}{\int{u^{- \frac{1}{2}} d u}}}={\color{red}{\frac{u^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}={\color{red}{\left(2 u^{\frac{1}{2}}\right)}}={\color{red}{\left(2 \sqrt{u}\right)}}$$
Zur Erinnerung: $$$u=\tan{\left(x \right)}$$$:
$$2 \sqrt{{\color{red}{u}}} = 2 \sqrt{{\color{red}{\tan{\left(x \right)}}}}$$
Daher,
$$\int{\frac{\sqrt{\tan{\left(x \right)}}}{\sin{\left(x \right)} \cos{\left(x \right)}} d x} = 2 \sqrt{\tan{\left(x \right)}}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{\sqrt{\tan{\left(x \right)}}}{\sin{\left(x \right)} \cos{\left(x \right)}} d x} = 2 \sqrt{\tan{\left(x \right)}}+C$$
Antwort
$$$\int \frac{\sqrt{\tan{\left(x \right)}}}{\sin{\left(x \right)} \cos{\left(x \right)}}\, dx = 2 \sqrt{\tan{\left(x \right)}} + C$$$A