Ολοκλήρωμα του $$$\frac{\sqrt{\tan{\left(x \right)}}}{\sin{\left(x \right)} \cos{\left(x \right)}}$$$

Ο υπολογιστής θα υπολογίσει το ολοκλήρωμα/την αντιπαράγωγο της $$$\frac{\sqrt{\tan{\left(x \right)}}}{\sin{\left(x \right)} \cos{\left(x \right)}}$$$, με εμφάνιση των βημάτων.

Σχετικός υπολογιστής: Υπολογιστής Ορισμένου και Ακατάλληλου Ολοκληρώματος

Παρακαλώ γράψτε χωρίς διαφορικά, όπως $$$dx$$$, $$$dy$$$, κ.λπ.
Αφήστε κενό για αυτόματη ανίχνευση.

Εάν η αριθμομηχανή δεν υπολόγισε κάτι ή έχετε εντοπίσει κάποιο σφάλμα, ή έχετε κάποια πρόταση/σχόλιο, παρακαλούμε επικοινωνήστε μαζί μας.

Η είσοδός σας

Βρείτε $$$\int \frac{\sqrt{\tan{\left(x \right)}}}{\sin{\left(x \right)} \cos{\left(x \right)}}\, dx$$$.

Λύση

Έστω $$$u=\tan{\left(x \right)}$$$.

Τότε $$$x=\operatorname{atan}{\left(u \right)}$$$ και $$$dx=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$ (τα βήματα μπορούν να φανούν »).

Επομένως,

$${\color{red}{\int{\frac{\sqrt{\tan{\left(x \right)}}}{\sin{\left(x \right)} \cos{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}$$

Εφαρμόστε τον κανόνα δύναμης $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ με $$$n=- \frac{1}{2}$$$:

$${\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}={\color{red}{\int{u^{- \frac{1}{2}} d u}}}={\color{red}{\frac{u^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}={\color{red}{\left(2 u^{\frac{1}{2}}\right)}}={\color{red}{\left(2 \sqrt{u}\right)}}$$

Θυμηθείτε ότι $$$u=\tan{\left(x \right)}$$$:

$$2 \sqrt{{\color{red}{u}}} = 2 \sqrt{{\color{red}{\tan{\left(x \right)}}}}$$

Επομένως,

$$\int{\frac{\sqrt{\tan{\left(x \right)}}}{\sin{\left(x \right)} \cos{\left(x \right)}} d x} = 2 \sqrt{\tan{\left(x \right)}}$$

Προσθέστε τη σταθερά ολοκλήρωσης:

$$\int{\frac{\sqrt{\tan{\left(x \right)}}}{\sin{\left(x \right)} \cos{\left(x \right)}} d x} = 2 \sqrt{\tan{\left(x \right)}}+C$$

Απάντηση

$$$\int \frac{\sqrt{\tan{\left(x \right)}}}{\sin{\left(x \right)} \cos{\left(x \right)}}\, dx = 2 \sqrt{\tan{\left(x \right)}} + C$$$A


Please try a new game Rotatly