$$$\frac{\sqrt{\tan{\left(x \right)}}}{\sin{\left(x \right)} \cos{\left(x \right)}}$$$の積分

この計算機は、手順を示しながら$$$\frac{\sqrt{\tan{\left(x \right)}}}{\sin{\left(x \right)} \cos{\left(x \right)}}$$$の不定積分(原始関数)を求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \frac{\sqrt{\tan{\left(x \right)}}}{\sin{\left(x \right)} \cos{\left(x \right)}}\, dx$$$ を求めよ。

解答

$$$u=\tan{\left(x \right)}$$$ とする。

すると $$$x=\operatorname{atan}{\left(u \right)}$$$ および $$$dx=\left(\operatorname{atan}{\left(u \right)}\right)^{\prime }du = \frac{du}{u^{2} + 1}$$$(手順は»で確認できます)。

したがって、

$${\color{red}{\int{\frac{\sqrt{\tan{\left(x \right)}}}{\sin{\left(x \right)} \cos{\left(x \right)}} d x}}} = {\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}$$

$$$n=- \frac{1}{2}$$$ を用いて、べき乗の法則 $$$\int u^{n}\, du = \frac{u^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$${\color{red}{\int{\frac{1}{\sqrt{u}} d u}}}={\color{red}{\int{u^{- \frac{1}{2}} d u}}}={\color{red}{\frac{u^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1}}}={\color{red}{\left(2 u^{\frac{1}{2}}\right)}}={\color{red}{\left(2 \sqrt{u}\right)}}$$

次のことを思い出してください $$$u=\tan{\left(x \right)}$$$:

$$2 \sqrt{{\color{red}{u}}} = 2 \sqrt{{\color{red}{\tan{\left(x \right)}}}}$$

したがって、

$$\int{\frac{\sqrt{\tan{\left(x \right)}}}{\sin{\left(x \right)} \cos{\left(x \right)}} d x} = 2 \sqrt{\tan{\left(x \right)}}$$

積分定数を加える:

$$\int{\frac{\sqrt{\tan{\left(x \right)}}}{\sin{\left(x \right)} \cos{\left(x \right)}} d x} = 2 \sqrt{\tan{\left(x \right)}}+C$$

解答

$$$\int \frac{\sqrt{\tan{\left(x \right)}}}{\sin{\left(x \right)} \cos{\left(x \right)}}\, dx = 2 \sqrt{\tan{\left(x \right)}} + C$$$A


Please try a new game Rotatly