Integral von $$$- a^{2} + \frac{1}{s^{2}}$$$ nach $$$a$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \left(- a^{2} + \frac{1}{s^{2}}\right)\, da$$$.
Lösung
Gliedweise integrieren:
$${\color{red}{\int{\left(- a^{2} + \frac{1}{s^{2}}\right)d a}}} = {\color{red}{\left(- \int{a^{2} d a} + \int{\frac{1}{s^{2}} d a}\right)}}$$
Wenden Sie die Konstantenregel $$$\int c\, da = a c$$$ mit $$$c=\frac{1}{s^{2}}$$$ an:
$$- \int{a^{2} d a} + {\color{red}{\int{\frac{1}{s^{2}} d a}}} = - \int{a^{2} d a} + {\color{red}{\frac{a}{s^{2}}}}$$
Wenden Sie die Potenzregel $$$\int a^{n}\, da = \frac{a^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=2$$$ an:
$$\frac{a}{s^{2}} - {\color{red}{\int{a^{2} d a}}}=\frac{a}{s^{2}} - {\color{red}{\frac{a^{1 + 2}}{1 + 2}}}=\frac{a}{s^{2}} - {\color{red}{\left(\frac{a^{3}}{3}\right)}}$$
Daher,
$$\int{\left(- a^{2} + \frac{1}{s^{2}}\right)d a} = - \frac{a^{3}}{3} + \frac{a}{s^{2}}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\left(- a^{2} + \frac{1}{s^{2}}\right)d a} = - \frac{a^{3}}{3} + \frac{a}{s^{2}}+C$$
Antwort
$$$\int \left(- a^{2} + \frac{1}{s^{2}}\right)\, da = \left(- \frac{a^{3}}{3} + \frac{a}{s^{2}}\right) + C$$$A