$$$- a^{2} + \frac{1}{s^{2}}$$$$$$a$$$ に関する積分

この計算機は、$$$a$$$ に関して $$$- a^{2} + \frac{1}{s^{2}}$$$ の積分/原始関数を、手順を示しながら求めます。

関連する計算機: 定積分・広義積分計算機

$$$dx$$$$$$dy$$$ などの微分記号を使わずに書いてください。
自動検出のため、空欄のままにしてください。

計算機が計算を実行できなかった場合、エラーを見つけた場合、またはご提案・フィードバックがある場合は、お問い合わせください

入力内容

$$$\int \left(- a^{2} + \frac{1}{s^{2}}\right)\, da$$$ を求めよ。

解答

項別に積分せよ:

$${\color{red}{\int{\left(- a^{2} + \frac{1}{s^{2}}\right)d a}}} = {\color{red}{\left(- \int{a^{2} d a} + \int{\frac{1}{s^{2}} d a}\right)}}$$

$$$c=\frac{1}{s^{2}}$$$ に対して定数則 $$$\int c\, da = a c$$$ を適用する:

$$- \int{a^{2} d a} + {\color{red}{\int{\frac{1}{s^{2}} d a}}} = - \int{a^{2} d a} + {\color{red}{\frac{a}{s^{2}}}}$$

$$$n=2$$$ を用いて、べき乗の法則 $$$\int a^{n}\, da = \frac{a^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ を適用します:

$$\frac{a}{s^{2}} - {\color{red}{\int{a^{2} d a}}}=\frac{a}{s^{2}} - {\color{red}{\frac{a^{1 + 2}}{1 + 2}}}=\frac{a}{s^{2}} - {\color{red}{\left(\frac{a^{3}}{3}\right)}}$$

したがって、

$$\int{\left(- a^{2} + \frac{1}{s^{2}}\right)d a} = - \frac{a^{3}}{3} + \frac{a}{s^{2}}$$

積分定数を加える:

$$\int{\left(- a^{2} + \frac{1}{s^{2}}\right)d a} = - \frac{a^{3}}{3} + \frac{a}{s^{2}}+C$$

解答

$$$\int \left(- a^{2} + \frac{1}{s^{2}}\right)\, da = \left(- \frac{a^{3}}{3} + \frac{a}{s^{2}}\right) + C$$$A


Please try a new game Rotatly