$$$- a^{2} + \frac{1}{s^{2}}$$$ 對 $$$a$$$ 的積分
您的輸入
求$$$\int \left(- a^{2} + \frac{1}{s^{2}}\right)\, da$$$。
解答
逐項積分:
$${\color{red}{\int{\left(- a^{2} + \frac{1}{s^{2}}\right)d a}}} = {\color{red}{\left(- \int{a^{2} d a} + \int{\frac{1}{s^{2}} d a}\right)}}$$
配合 $$$c=\frac{1}{s^{2}}$$$,應用常數法則 $$$\int c\, da = a c$$$:
$$- \int{a^{2} d a} + {\color{red}{\int{\frac{1}{s^{2}} d a}}} = - \int{a^{2} d a} + {\color{red}{\frac{a}{s^{2}}}}$$
套用冪次法則 $$$\int a^{n}\, da = \frac{a^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$,以 $$$n=2$$$:
$$\frac{a}{s^{2}} - {\color{red}{\int{a^{2} d a}}}=\frac{a}{s^{2}} - {\color{red}{\frac{a^{1 + 2}}{1 + 2}}}=\frac{a}{s^{2}} - {\color{red}{\left(\frac{a^{3}}{3}\right)}}$$
因此,
$$\int{\left(- a^{2} + \frac{1}{s^{2}}\right)d a} = - \frac{a^{3}}{3} + \frac{a}{s^{2}}$$
加上積分常數:
$$\int{\left(- a^{2} + \frac{1}{s^{2}}\right)d a} = - \frac{a^{3}}{3} + \frac{a}{s^{2}}+C$$
答案
$$$\int \left(- a^{2} + \frac{1}{s^{2}}\right)\, da = \left(- \frac{a^{3}}{3} + \frac{a}{s^{2}}\right) + C$$$A