Integral von $$$\frac{1}{t^{3} - t}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{1}{t^{3} - t}\, dt$$$.
Lösung
Partialbruchzerlegung durchführen (die Schritte sind » zu sehen):
$${\color{red}{\int{\frac{1}{t^{3} - t} d t}}} = {\color{red}{\int{\left(\frac{1}{2 \left(t + 1\right)} + \frac{1}{2 \left(t - 1\right)} - \frac{1}{t}\right)d t}}}$$
Gliedweise integrieren:
$${\color{red}{\int{\left(\frac{1}{2 \left(t + 1\right)} + \frac{1}{2 \left(t - 1\right)} - \frac{1}{t}\right)d t}}} = {\color{red}{\left(- \int{\frac{1}{t} d t} + \int{\frac{1}{2 \left(t - 1\right)} d t} + \int{\frac{1}{2 \left(t + 1\right)} d t}\right)}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(t \right)} = \frac{1}{t + 1}$$$ an:
$$- \int{\frac{1}{t} d t} + \int{\frac{1}{2 \left(t - 1\right)} d t} + {\color{red}{\int{\frac{1}{2 \left(t + 1\right)} d t}}} = - \int{\frac{1}{t} d t} + \int{\frac{1}{2 \left(t - 1\right)} d t} + {\color{red}{\left(\frac{\int{\frac{1}{t + 1} d t}}{2}\right)}}$$
Sei $$$u=t + 1$$$.
Dann $$$du=\left(t + 1\right)^{\prime }dt = 1 dt$$$ (die Schritte sind » zu sehen), und es gilt $$$dt = du$$$.
Also,
$$- \int{\frac{1}{t} d t} + \int{\frac{1}{2 \left(t - 1\right)} d t} + \frac{{\color{red}{\int{\frac{1}{t + 1} d t}}}}{2} = - \int{\frac{1}{t} d t} + \int{\frac{1}{2 \left(t - 1\right)} d t} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
Das Integral von $$$\frac{1}{u}$$$ ist $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$- \int{\frac{1}{t} d t} + \int{\frac{1}{2 \left(t - 1\right)} d t} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = - \int{\frac{1}{t} d t} + \int{\frac{1}{2 \left(t - 1\right)} d t} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
Zur Erinnerung: $$$u=t + 1$$$:
$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \int{\frac{1}{t} d t} + \int{\frac{1}{2 \left(t - 1\right)} d t} = \frac{\ln{\left(\left|{{\color{red}{\left(t + 1\right)}}}\right| \right)}}{2} - \int{\frac{1}{t} d t} + \int{\frac{1}{2 \left(t - 1\right)} d t}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ mit $$$c=\frac{1}{2}$$$ und $$$f{\left(t \right)} = \frac{1}{t - 1}$$$ an:
$$\frac{\ln{\left(\left|{t + 1}\right| \right)}}{2} - \int{\frac{1}{t} d t} + {\color{red}{\int{\frac{1}{2 \left(t - 1\right)} d t}}} = \frac{\ln{\left(\left|{t + 1}\right| \right)}}{2} - \int{\frac{1}{t} d t} + {\color{red}{\left(\frac{\int{\frac{1}{t - 1} d t}}{2}\right)}}$$
Sei $$$u=t - 1$$$.
Dann $$$du=\left(t - 1\right)^{\prime }dt = 1 dt$$$ (die Schritte sind » zu sehen), und es gilt $$$dt = du$$$.
Das Integral wird zu
$$\frac{\ln{\left(\left|{t + 1}\right| \right)}}{2} - \int{\frac{1}{t} d t} + \frac{{\color{red}{\int{\frac{1}{t - 1} d t}}}}{2} = \frac{\ln{\left(\left|{t + 1}\right| \right)}}{2} - \int{\frac{1}{t} d t} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$
Das Integral von $$$\frac{1}{u}$$$ ist $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:
$$\frac{\ln{\left(\left|{t + 1}\right| \right)}}{2} - \int{\frac{1}{t} d t} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{\ln{\left(\left|{t + 1}\right| \right)}}{2} - \int{\frac{1}{t} d t} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$
Zur Erinnerung: $$$u=t - 1$$$:
$$\frac{\ln{\left(\left|{t + 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \int{\frac{1}{t} d t} = \frac{\ln{\left(\left|{t + 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{{\color{red}{\left(t - 1\right)}}}\right| \right)}}{2} - \int{\frac{1}{t} d t}$$
Das Integral von $$$\frac{1}{t}$$$ ist $$$\int{\frac{1}{t} d t} = \ln{\left(\left|{t}\right| \right)}$$$:
$$\frac{\ln{\left(\left|{t - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{t + 1}\right| \right)}}{2} - {\color{red}{\int{\frac{1}{t} d t}}} = \frac{\ln{\left(\left|{t - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{t + 1}\right| \right)}}{2} - {\color{red}{\ln{\left(\left|{t}\right| \right)}}}$$
Daher,
$$\int{\frac{1}{t^{3} - t} d t} = - \ln{\left(\left|{t}\right| \right)} + \frac{\ln{\left(\left|{t - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{t + 1}\right| \right)}}{2}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{\frac{1}{t^{3} - t} d t} = - \ln{\left(\left|{t}\right| \right)} + \frac{\ln{\left(\left|{t - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{t + 1}\right| \right)}}{2}+C$$
Antwort
$$$\int \frac{1}{t^{3} - t}\, dt = \left(- \ln\left(\left|{t}\right|\right) + \frac{\ln\left(\left|{t - 1}\right|\right)}{2} + \frac{\ln\left(\left|{t + 1}\right|\right)}{2}\right) + C$$$A