Integraal van $$$\frac{1}{t^{3} - t}$$$

De calculator zal de integraal/primitieve functie van $$$\frac{1}{t^{3} - t}$$$ bepalen, waarbij de stappen worden weergegeven.

Gerelateerde rekenmachine: Rekenmachine voor bepaalde en oneigenlijke integralen

Schrijf alstublieft zonder differentiëlen zoals $$$dx$$$, $$$dy$$$, enz.
Leeg laten voor automatische detectie.

Als de rekenmachine iets niet heeft berekend, als u een fout hebt ontdekt of als u een suggestie/feedback hebt, neem dan contact met ons op.

Uw invoer

Bepaal $$$\int \frac{1}{t^{3} - t}\, dt$$$.

Oplossing

Voer een ontbinding in partiële breuken uit (stappen zijn te zien »):

$${\color{red}{\int{\frac{1}{t^{3} - t} d t}}} = {\color{red}{\int{\left(\frac{1}{2 \left(t + 1\right)} + \frac{1}{2 \left(t - 1\right)} - \frac{1}{t}\right)d t}}}$$

Integreer termgewijs:

$${\color{red}{\int{\left(\frac{1}{2 \left(t + 1\right)} + \frac{1}{2 \left(t - 1\right)} - \frac{1}{t}\right)d t}}} = {\color{red}{\left(- \int{\frac{1}{t} d t} + \int{\frac{1}{2 \left(t - 1\right)} d t} + \int{\frac{1}{2 \left(t + 1\right)} d t}\right)}}$$

Pas de constante-veelvoudregel $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(t \right)} = \frac{1}{t + 1}$$$:

$$- \int{\frac{1}{t} d t} + \int{\frac{1}{2 \left(t - 1\right)} d t} + {\color{red}{\int{\frac{1}{2 \left(t + 1\right)} d t}}} = - \int{\frac{1}{t} d t} + \int{\frac{1}{2 \left(t - 1\right)} d t} + {\color{red}{\left(\frac{\int{\frac{1}{t + 1} d t}}{2}\right)}}$$

Zij $$$u=t + 1$$$.

Dan $$$du=\left(t + 1\right)^{\prime }dt = 1 dt$$$ (de stappen zijn te zien »), en dan geldt dat $$$dt = du$$$.

De integraal wordt

$$- \int{\frac{1}{t} d t} + \int{\frac{1}{2 \left(t - 1\right)} d t} + \frac{{\color{red}{\int{\frac{1}{t + 1} d t}}}}{2} = - \int{\frac{1}{t} d t} + \int{\frac{1}{2 \left(t - 1\right)} d t} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$

De integraal van $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$- \int{\frac{1}{t} d t} + \int{\frac{1}{2 \left(t - 1\right)} d t} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = - \int{\frac{1}{t} d t} + \int{\frac{1}{2 \left(t - 1\right)} d t} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

We herinneren eraan dat $$$u=t + 1$$$:

$$\frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \int{\frac{1}{t} d t} + \int{\frac{1}{2 \left(t - 1\right)} d t} = \frac{\ln{\left(\left|{{\color{red}{\left(t + 1\right)}}}\right| \right)}}{2} - \int{\frac{1}{t} d t} + \int{\frac{1}{2 \left(t - 1\right)} d t}$$

Pas de constante-veelvoudregel $$$\int c f{\left(t \right)}\, dt = c \int f{\left(t \right)}\, dt$$$ toe met $$$c=\frac{1}{2}$$$ en $$$f{\left(t \right)} = \frac{1}{t - 1}$$$:

$$\frac{\ln{\left(\left|{t + 1}\right| \right)}}{2} - \int{\frac{1}{t} d t} + {\color{red}{\int{\frac{1}{2 \left(t - 1\right)} d t}}} = \frac{\ln{\left(\left|{t + 1}\right| \right)}}{2} - \int{\frac{1}{t} d t} + {\color{red}{\left(\frac{\int{\frac{1}{t - 1} d t}}{2}\right)}}$$

Zij $$$u=t - 1$$$.

Dan $$$du=\left(t - 1\right)^{\prime }dt = 1 dt$$$ (de stappen zijn te zien »), en dan geldt dat $$$dt = du$$$.

De integraal kan worden herschreven als

$$\frac{\ln{\left(\left|{t + 1}\right| \right)}}{2} - \int{\frac{1}{t} d t} + \frac{{\color{red}{\int{\frac{1}{t - 1} d t}}}}{2} = \frac{\ln{\left(\left|{t + 1}\right| \right)}}{2} - \int{\frac{1}{t} d t} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2}$$

De integraal van $$$\frac{1}{u}$$$ is $$$\int{\frac{1}{u} d u} = \ln{\left(\left|{u}\right| \right)}$$$:

$$\frac{\ln{\left(\left|{t + 1}\right| \right)}}{2} - \int{\frac{1}{t} d t} + \frac{{\color{red}{\int{\frac{1}{u} d u}}}}{2} = \frac{\ln{\left(\left|{t + 1}\right| \right)}}{2} - \int{\frac{1}{t} d t} + \frac{{\color{red}{\ln{\left(\left|{u}\right| \right)}}}}{2}$$

We herinneren eraan dat $$$u=t - 1$$$:

$$\frac{\ln{\left(\left|{t + 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{{\color{red}{u}}}\right| \right)}}{2} - \int{\frac{1}{t} d t} = \frac{\ln{\left(\left|{t + 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{{\color{red}{\left(t - 1\right)}}}\right| \right)}}{2} - \int{\frac{1}{t} d t}$$

De integraal van $$$\frac{1}{t}$$$ is $$$\int{\frac{1}{t} d t} = \ln{\left(\left|{t}\right| \right)}$$$:

$$\frac{\ln{\left(\left|{t - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{t + 1}\right| \right)}}{2} - {\color{red}{\int{\frac{1}{t} d t}}} = \frac{\ln{\left(\left|{t - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{t + 1}\right| \right)}}{2} - {\color{red}{\ln{\left(\left|{t}\right| \right)}}}$$

Dus,

$$\int{\frac{1}{t^{3} - t} d t} = - \ln{\left(\left|{t}\right| \right)} + \frac{\ln{\left(\left|{t - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{t + 1}\right| \right)}}{2}$$

Voeg de integratieconstante toe:

$$\int{\frac{1}{t^{3} - t} d t} = - \ln{\left(\left|{t}\right| \right)} + \frac{\ln{\left(\left|{t - 1}\right| \right)}}{2} + \frac{\ln{\left(\left|{t + 1}\right| \right)}}{2}+C$$

Antwoord

$$$\int \frac{1}{t^{3} - t}\, dt = \left(- \ln\left(\left|{t}\right|\right) + \frac{\ln\left(\left|{t - 1}\right|\right)}{2} + \frac{\ln\left(\left|{t + 1}\right|\right)}{2}\right) + C$$$A


Please try a new game Rotatly