Integral von $$$\frac{x^{15} \ln\left(x^{16}\right)}{16}$$$
Verwandter Rechner: Rechner für bestimmte und uneigentliche Integrale
Ihre Eingabe
Bestimme $$$\int \frac{x^{15} \ln\left(x^{16}\right)}{16}\, dx$$$.
Lösung
Die Eingabe wird umgeschrieben: $$$\int{\frac{x^{15} \ln{\left(x^{16} \right)}}{16} d x}=\int{x^{15} \ln{\left(x \right)} d x}$$$.
Für das Integral $$$\int{x^{15} \ln{\left(x \right)} d x}$$$ verwenden Sie die partielle Integration $$$\int \operatorname{u} \operatorname{dv} = \operatorname{u}\operatorname{v} - \int \operatorname{v} \operatorname{du}$$$.
Seien $$$\operatorname{u}=\ln{\left(x \right)}$$$ und $$$\operatorname{dv}=x^{15} dx$$$.
Dann gilt $$$\operatorname{du}=\left(\ln{\left(x \right)}\right)^{\prime }dx=\frac{dx}{x}$$$ (Rechenschritte siehe ») und $$$\operatorname{v}=\int{x^{15} d x}=\frac{x^{16}}{16}$$$ (Rechenschritte siehe »).
Das Integral lässt sich umschreiben als
$${\color{red}{\int{x^{15} \ln{\left(x \right)} d x}}}={\color{red}{\left(\ln{\left(x \right)} \cdot \frac{x^{16}}{16}-\int{\frac{x^{16}}{16} \cdot \frac{1}{x} d x}\right)}}={\color{red}{\left(\frac{x^{16} \ln{\left(x \right)}}{16} - \int{\frac{x^{15}}{16} d x}\right)}}$$
Wende die Konstantenfaktorregel $$$\int c f{\left(x \right)}\, dx = c \int f{\left(x \right)}\, dx$$$ mit $$$c=\frac{1}{16}$$$ und $$$f{\left(x \right)} = x^{15}$$$ an:
$$\frac{x^{16} \ln{\left(x \right)}}{16} - {\color{red}{\int{\frac{x^{15}}{16} d x}}} = \frac{x^{16} \ln{\left(x \right)}}{16} - {\color{red}{\left(\frac{\int{x^{15} d x}}{16}\right)}}$$
Wenden Sie die Potenzregel $$$\int x^{n}\, dx = \frac{x^{n + 1}}{n + 1}$$$ $$$\left(n \neq -1 \right)$$$ mit $$$n=15$$$ an:
$$\frac{x^{16} \ln{\left(x \right)}}{16} - \frac{{\color{red}{\int{x^{15} d x}}}}{16}=\frac{x^{16} \ln{\left(x \right)}}{16} - \frac{{\color{red}{\frac{x^{1 + 15}}{1 + 15}}}}{16}=\frac{x^{16} \ln{\left(x \right)}}{16} - \frac{{\color{red}{\left(\frac{x^{16}}{16}\right)}}}{16}$$
Daher,
$$\int{x^{15} \ln{\left(x \right)} d x} = \frac{x^{16} \ln{\left(x \right)}}{16} - \frac{x^{16}}{256}$$
Vereinfachen:
$$\int{x^{15} \ln{\left(x \right)} d x} = \frac{x^{16} \left(16 \ln{\left(x \right)} - 1\right)}{256}$$
Fügen Sie die Integrationskonstante hinzu:
$$\int{x^{15} \ln{\left(x \right)} d x} = \frac{x^{16} \left(16 \ln{\left(x \right)} - 1\right)}{256}+C$$
Antwort
$$$\int \frac{x^{15} \ln\left(x^{16}\right)}{16}\, dx = \frac{x^{16} \left(16 \ln\left(x\right) - 1\right)}{256} + C$$$A