Zweite Ableitung von $$$\frac{1}{1 + e^{- x}}$$$
Ähnliche Rechner: Ableitungsrechner, Rechner für logarithmische Differentiation
Ihre Eingabe
Bestimme $$$\frac{d^{2}}{dx^{2}} \left(\frac{1}{1 + e^{- x}}\right)$$$.
Lösung
Bestimme die erste Ableitung $$$\frac{d}{dx} \left(\frac{1}{1 + e^{- x}}\right)$$$
Die Funktion $$$\frac{1}{1 + e^{- x}}$$$ ist die Komposition $$$f{\left(g{\left(x \right)} \right)}$$$ der beiden Funktionen $$$f{\left(u \right)} = \frac{1}{u}$$$ und $$$g{\left(x \right)} = 1 + e^{- x}$$$.
Wende die Kettenregel $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ an:
$${\color{red}\left(\frac{d}{dx} \left(\frac{1}{1 + e^{- x}}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\frac{1}{u}\right) \frac{d}{dx} \left(1 + e^{- x}\right)\right)}$$Wende die Potenzregel $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ mit $$$n = -1$$$ an:
$${\color{red}\left(\frac{d}{du} \left(\frac{1}{u}\right)\right)} \frac{d}{dx} \left(1 + e^{- x}\right) = {\color{red}\left(- \frac{1}{u^{2}}\right)} \frac{d}{dx} \left(1 + e^{- x}\right)$$Zurück zur ursprünglichen Variable:
$$- \frac{\frac{d}{dx} \left(1 + e^{- x}\right)}{{\color{red}\left(u\right)}^{2}} = - \frac{\frac{d}{dx} \left(1 + e^{- x}\right)}{{\color{red}\left(1 + e^{- x}\right)}^{2}}$$Die Ableitung einer Summe/Differenz ist die Summe/Differenz der Ableitungen:
$$- \frac{{\color{red}\left(\frac{d}{dx} \left(1 + e^{- x}\right)\right)}}{\left(1 + e^{- x}\right)^{2}} = - \frac{{\color{red}\left(\frac{d}{dx} \left(1\right) + \frac{d}{dx} \left(e^{- x}\right)\right)}}{\left(1 + e^{- x}\right)^{2}}$$Die Ableitung einer Konstante ist $$$0$$$:
$$- \frac{{\color{red}\left(\frac{d}{dx} \left(1\right)\right)} + \frac{d}{dx} \left(e^{- x}\right)}{\left(1 + e^{- x}\right)^{2}} = - \frac{{\color{red}\left(0\right)} + \frac{d}{dx} \left(e^{- x}\right)}{\left(1 + e^{- x}\right)^{2}}$$Die Funktion $$$e^{- x}$$$ ist die Komposition $$$f{\left(g{\left(x \right)} \right)}$$$ der beiden Funktionen $$$f{\left(u \right)} = e^{u}$$$ und $$$g{\left(x \right)} = - x$$$.
Wende die Kettenregel $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ an:
$$- \frac{{\color{red}\left(\frac{d}{dx} \left(e^{- x}\right)\right)}}{\left(1 + e^{- x}\right)^{2}} = - \frac{{\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dx} \left(- x\right)\right)}}{\left(1 + e^{- x}\right)^{2}}$$Die Ableitung der Exponentialfunktion ist $$$\frac{d}{du} \left(e^{u}\right) = e^{u}$$$:
$$- \frac{{\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dx} \left(- x\right)}{\left(1 + e^{- x}\right)^{2}} = - \frac{{\color{red}\left(e^{u}\right)} \frac{d}{dx} \left(- x\right)}{\left(1 + e^{- x}\right)^{2}}$$Zurück zur ursprünglichen Variable:
$$- \frac{e^{{\color{red}\left(u\right)}} \frac{d}{dx} \left(- x\right)}{\left(1 + e^{- x}\right)^{2}} = - \frac{e^{{\color{red}\left(- x\right)}} \frac{d}{dx} \left(- x\right)}{\left(1 + e^{- x}\right)^{2}}$$Wende die Konstantenfaktorregel $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ mit $$$c = -1$$$ und $$$f{\left(x \right)} = x$$$ an:
$$- \frac{e^{- x} {\color{red}\left(\frac{d}{dx} \left(- x\right)\right)}}{\left(1 + e^{- x}\right)^{2}} = - \frac{e^{- x} {\color{red}\left(- \frac{d}{dx} \left(x\right)\right)}}{\left(1 + e^{- x}\right)^{2}}$$Wenden Sie die Potenzregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ mit $$$n = 1$$$ an, mit anderen Worten, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\frac{e^{- x} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{\left(1 + e^{- x}\right)^{2}} = \frac{e^{- x} {\color{red}\left(1\right)}}{\left(1 + e^{- x}\right)^{2}}$$Vereinfachen:
$$\frac{e^{- x}}{\left(1 + e^{- x}\right)^{2}} = \frac{1}{4 \cosh^{2}{\left(\frac{x}{2} \right)}}$$Somit gilt $$$\frac{d}{dx} \left(\frac{1}{1 + e^{- x}}\right) = \frac{1}{4 \cosh^{2}{\left(\frac{x}{2} \right)}}$$$.
Als Nächstes, $$$\frac{d^{2}}{dx^{2}} \left(\frac{1}{1 + e^{- x}}\right) = \frac{d}{dx} \left(\frac{1}{4 \cosh^{2}{\left(\frac{x}{2} \right)}}\right)$$$
Wende die Konstantenfaktorregel $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ mit $$$c = \frac{1}{4}$$$ und $$$f{\left(x \right)} = \frac{1}{\cosh^{2}{\left(\frac{x}{2} \right)}}$$$ an:
$${\color{red}\left(\frac{d}{dx} \left(\frac{1}{4 \cosh^{2}{\left(\frac{x}{2} \right)}}\right)\right)} = {\color{red}\left(\frac{\frac{d}{dx} \left(\frac{1}{\cosh^{2}{\left(\frac{x}{2} \right)}}\right)}{4}\right)}$$Die Funktion $$$\frac{1}{\cosh^{2}{\left(\frac{x}{2} \right)}}$$$ ist die Komposition $$$f{\left(g{\left(x \right)} \right)}$$$ der beiden Funktionen $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$ und $$$g{\left(x \right)} = \cosh{\left(\frac{x}{2} \right)}$$$.
Wende die Kettenregel $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ an:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(\frac{1}{\cosh^{2}{\left(\frac{x}{2} \right)}}\right)\right)}}{4} = \frac{{\color{red}\left(\frac{d}{du} \left(\frac{1}{u^{2}}\right) \frac{d}{dx} \left(\cosh{\left(\frac{x}{2} \right)}\right)\right)}}{4}$$Wende die Potenzregel $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ mit $$$n = -2$$$ an:
$$\frac{{\color{red}\left(\frac{d}{du} \left(\frac{1}{u^{2}}\right)\right)} \frac{d}{dx} \left(\cosh{\left(\frac{x}{2} \right)}\right)}{4} = \frac{{\color{red}\left(- \frac{2}{u^{3}}\right)} \frac{d}{dx} \left(\cosh{\left(\frac{x}{2} \right)}\right)}{4}$$Zurück zur ursprünglichen Variable:
$$- \frac{\frac{d}{dx} \left(\cosh{\left(\frac{x}{2} \right)}\right)}{2 {\color{red}\left(u\right)}^{3}} = - \frac{\frac{d}{dx} \left(\cosh{\left(\frac{x}{2} \right)}\right)}{2 {\color{red}\left(\cosh{\left(\frac{x}{2} \right)}\right)}^{3}}$$Die Funktion $$$\cosh{\left(\frac{x}{2} \right)}$$$ ist die Komposition $$$f{\left(g{\left(x \right)} \right)}$$$ der beiden Funktionen $$$f{\left(u \right)} = \cosh{\left(u \right)}$$$ und $$$g{\left(x \right)} = \frac{x}{2}$$$.
Wende die Kettenregel $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$ an:
$$- \frac{{\color{red}\left(\frac{d}{dx} \left(\cosh{\left(\frac{x}{2} \right)}\right)\right)}}{2 \cosh^{3}{\left(\frac{x}{2} \right)}} = - \frac{{\color{red}\left(\frac{d}{du} \left(\cosh{\left(u \right)}\right) \frac{d}{dx} \left(\frac{x}{2}\right)\right)}}{2 \cosh^{3}{\left(\frac{x}{2} \right)}}$$Die Ableitung des hyperbolischen Kosinus ist $$$\frac{d}{du} \left(\cosh{\left(u \right)}\right) = \sinh{\left(u \right)}$$$:
$$- \frac{{\color{red}\left(\frac{d}{du} \left(\cosh{\left(u \right)}\right)\right)} \frac{d}{dx} \left(\frac{x}{2}\right)}{2 \cosh^{3}{\left(\frac{x}{2} \right)}} = - \frac{{\color{red}\left(\sinh{\left(u \right)}\right)} \frac{d}{dx} \left(\frac{x}{2}\right)}{2 \cosh^{3}{\left(\frac{x}{2} \right)}}$$Zurück zur ursprünglichen Variable:
$$- \frac{\sinh{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(\frac{x}{2}\right)}{2 \cosh^{3}{\left(\frac{x}{2} \right)}} = - \frac{\sinh{\left({\color{red}\left(\frac{x}{2}\right)} \right)} \frac{d}{dx} \left(\frac{x}{2}\right)}{2 \cosh^{3}{\left(\frac{x}{2} \right)}}$$Wende die Konstantenfaktorregel $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ mit $$$c = \frac{1}{2}$$$ und $$$f{\left(x \right)} = x$$$ an:
$$- \frac{\sinh{\left(\frac{x}{2} \right)} {\color{red}\left(\frac{d}{dx} \left(\frac{x}{2}\right)\right)}}{2 \cosh^{3}{\left(\frac{x}{2} \right)}} = - \frac{\sinh{\left(\frac{x}{2} \right)} {\color{red}\left(\frac{\frac{d}{dx} \left(x\right)}{2}\right)}}{2 \cosh^{3}{\left(\frac{x}{2} \right)}}$$Wenden Sie die Potenzregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ mit $$$n = 1$$$ an, mit anderen Worten, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$- \frac{\sinh{\left(\frac{x}{2} \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{4 \cosh^{3}{\left(\frac{x}{2} \right)}} = - \frac{\sinh{\left(\frac{x}{2} \right)} {\color{red}\left(1\right)}}{4 \cosh^{3}{\left(\frac{x}{2} \right)}}$$Somit gilt $$$\frac{d}{dx} \left(\frac{1}{4 \cosh^{2}{\left(\frac{x}{2} \right)}}\right) = - \frac{\sinh{\left(\frac{x}{2} \right)}}{4 \cosh^{3}{\left(\frac{x}{2} \right)}}$$$.
Daher $$$\frac{d^{2}}{dx^{2}} \left(\frac{1}{1 + e^{- x}}\right) = - \frac{\sinh{\left(\frac{x}{2} \right)}}{4 \cosh^{3}{\left(\frac{x}{2} \right)}}$$$.
Antwort
$$$\frac{d^{2}}{dx^{2}} \left(\frac{1}{1 + e^{- x}}\right) = - \frac{\sinh{\left(\frac{x}{2} \right)}}{4 \cosh^{3}{\left(\frac{x}{2} \right)}}$$$A