Segunda derivada de $$$\frac{1}{1 + e^{- x}}$$$

La calculadora encontrará la segunda derivada de $$$\frac{1}{1 + e^{- x}}$$$, mostrando los pasos.

Calculadoras relacionadas: Calculadora de derivadas, Calculadora de diferenciación logarítmica

Deje en blanco para la detección automática.
Déjelo en blanco si no necesita la derivada en un punto específico.

Si la calculadora no pudo calcular algo, ha identificado un error o tiene una sugerencia o comentario, por favor contáctenos.

Tu entrada

Halla $$$\frac{d^{2}}{dx^{2}} \left(\frac{1}{1 + e^{- x}}\right)$$$.

Solución

Calcule la primera derivada $$$\frac{d}{dx} \left(\frac{1}{1 + e^{- x}}\right)$$$

La función $$$\frac{1}{1 + e^{- x}}$$$ es la composición $$$f{\left(g{\left(x \right)} \right)}$$$ de dos funciones $$$f{\left(u \right)} = \frac{1}{u}$$$ y $$$g{\left(x \right)} = 1 + e^{- x}$$$.

Aplica la regla de la cadena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$${\color{red}\left(\frac{d}{dx} \left(\frac{1}{1 + e^{- x}}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\frac{1}{u}\right) \frac{d}{dx} \left(1 + e^{- x}\right)\right)}$$

Aplica la regla de la potencia $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ con $$$n = -1$$$:

$${\color{red}\left(\frac{d}{du} \left(\frac{1}{u}\right)\right)} \frac{d}{dx} \left(1 + e^{- x}\right) = {\color{red}\left(- \frac{1}{u^{2}}\right)} \frac{d}{dx} \left(1 + e^{- x}\right)$$

Volver a la variable original:

$$- \frac{\frac{d}{dx} \left(1 + e^{- x}\right)}{{\color{red}\left(u\right)}^{2}} = - \frac{\frac{d}{dx} \left(1 + e^{- x}\right)}{{\color{red}\left(1 + e^{- x}\right)}^{2}}$$

La derivada de una suma/diferencia es la suma/diferencia de las derivadas:

$$- \frac{{\color{red}\left(\frac{d}{dx} \left(1 + e^{- x}\right)\right)}}{\left(1 + e^{- x}\right)^{2}} = - \frac{{\color{red}\left(\frac{d}{dx} \left(1\right) + \frac{d}{dx} \left(e^{- x}\right)\right)}}{\left(1 + e^{- x}\right)^{2}}$$

La derivada de una constante es $$$0$$$:

$$- \frac{{\color{red}\left(\frac{d}{dx} \left(1\right)\right)} + \frac{d}{dx} \left(e^{- x}\right)}{\left(1 + e^{- x}\right)^{2}} = - \frac{{\color{red}\left(0\right)} + \frac{d}{dx} \left(e^{- x}\right)}{\left(1 + e^{- x}\right)^{2}}$$

La función $$$e^{- x}$$$ es la composición $$$f{\left(g{\left(x \right)} \right)}$$$ de dos funciones $$$f{\left(u \right)} = e^{u}$$$ y $$$g{\left(x \right)} = - x$$$.

Aplica la regla de la cadena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$$- \frac{{\color{red}\left(\frac{d}{dx} \left(e^{- x}\right)\right)}}{\left(1 + e^{- x}\right)^{2}} = - \frac{{\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dx} \left(- x\right)\right)}}{\left(1 + e^{- x}\right)^{2}}$$

La derivada de la función exponencial es $$$\frac{d}{du} \left(e^{u}\right) = e^{u}$$$:

$$- \frac{{\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dx} \left(- x\right)}{\left(1 + e^{- x}\right)^{2}} = - \frac{{\color{red}\left(e^{u}\right)} \frac{d}{dx} \left(- x\right)}{\left(1 + e^{- x}\right)^{2}}$$

Volver a la variable original:

$$- \frac{e^{{\color{red}\left(u\right)}} \frac{d}{dx} \left(- x\right)}{\left(1 + e^{- x}\right)^{2}} = - \frac{e^{{\color{red}\left(- x\right)}} \frac{d}{dx} \left(- x\right)}{\left(1 + e^{- x}\right)^{2}}$$

Aplica la regla del factor constante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ con $$$c = -1$$$ y $$$f{\left(x \right)} = x$$$:

$$- \frac{e^{- x} {\color{red}\left(\frac{d}{dx} \left(- x\right)\right)}}{\left(1 + e^{- x}\right)^{2}} = - \frac{e^{- x} {\color{red}\left(- \frac{d}{dx} \left(x\right)\right)}}{\left(1 + e^{- x}\right)^{2}}$$

Aplica la regla de la potencia $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 1$$$, en otras palabras, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$\frac{e^{- x} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{\left(1 + e^{- x}\right)^{2}} = \frac{e^{- x} {\color{red}\left(1\right)}}{\left(1 + e^{- x}\right)^{2}}$$

Simplificar:

$$\frac{e^{- x}}{\left(1 + e^{- x}\right)^{2}} = \frac{1}{4 \cosh^{2}{\left(\frac{x}{2} \right)}}$$

Por lo tanto, $$$\frac{d}{dx} \left(\frac{1}{1 + e^{- x}}\right) = \frac{1}{4 \cosh^{2}{\left(\frac{x}{2} \right)}}$$$.

A continuación, $$$\frac{d^{2}}{dx^{2}} \left(\frac{1}{1 + e^{- x}}\right) = \frac{d}{dx} \left(\frac{1}{4 \cosh^{2}{\left(\frac{x}{2} \right)}}\right)$$$

Aplica la regla del factor constante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ con $$$c = \frac{1}{4}$$$ y $$$f{\left(x \right)} = \frac{1}{\cosh^{2}{\left(\frac{x}{2} \right)}}$$$:

$${\color{red}\left(\frac{d}{dx} \left(\frac{1}{4 \cosh^{2}{\left(\frac{x}{2} \right)}}\right)\right)} = {\color{red}\left(\frac{\frac{d}{dx} \left(\frac{1}{\cosh^{2}{\left(\frac{x}{2} \right)}}\right)}{4}\right)}$$

La función $$$\frac{1}{\cosh^{2}{\left(\frac{x}{2} \right)}}$$$ es la composición $$$f{\left(g{\left(x \right)} \right)}$$$ de dos funciones $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$ y $$$g{\left(x \right)} = \cosh{\left(\frac{x}{2} \right)}$$$.

Aplica la regla de la cadena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$$\frac{{\color{red}\left(\frac{d}{dx} \left(\frac{1}{\cosh^{2}{\left(\frac{x}{2} \right)}}\right)\right)}}{4} = \frac{{\color{red}\left(\frac{d}{du} \left(\frac{1}{u^{2}}\right) \frac{d}{dx} \left(\cosh{\left(\frac{x}{2} \right)}\right)\right)}}{4}$$

Aplica la regla de la potencia $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$ con $$$n = -2$$$:

$$\frac{{\color{red}\left(\frac{d}{du} \left(\frac{1}{u^{2}}\right)\right)} \frac{d}{dx} \left(\cosh{\left(\frac{x}{2} \right)}\right)}{4} = \frac{{\color{red}\left(- \frac{2}{u^{3}}\right)} \frac{d}{dx} \left(\cosh{\left(\frac{x}{2} \right)}\right)}{4}$$

Volver a la variable original:

$$- \frac{\frac{d}{dx} \left(\cosh{\left(\frac{x}{2} \right)}\right)}{2 {\color{red}\left(u\right)}^{3}} = - \frac{\frac{d}{dx} \left(\cosh{\left(\frac{x}{2} \right)}\right)}{2 {\color{red}\left(\cosh{\left(\frac{x}{2} \right)}\right)}^{3}}$$

La función $$$\cosh{\left(\frac{x}{2} \right)}$$$ es la composición $$$f{\left(g{\left(x \right)} \right)}$$$ de dos funciones $$$f{\left(u \right)} = \cosh{\left(u \right)}$$$ y $$$g{\left(x \right)} = \frac{x}{2}$$$.

Aplica la regla de la cadena $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:

$$- \frac{{\color{red}\left(\frac{d}{dx} \left(\cosh{\left(\frac{x}{2} \right)}\right)\right)}}{2 \cosh^{3}{\left(\frac{x}{2} \right)}} = - \frac{{\color{red}\left(\frac{d}{du} \left(\cosh{\left(u \right)}\right) \frac{d}{dx} \left(\frac{x}{2}\right)\right)}}{2 \cosh^{3}{\left(\frac{x}{2} \right)}}$$

La derivada del coseno hiperbólico es $$$\frac{d}{du} \left(\cosh{\left(u \right)}\right) = \sinh{\left(u \right)}$$$:

$$- \frac{{\color{red}\left(\frac{d}{du} \left(\cosh{\left(u \right)}\right)\right)} \frac{d}{dx} \left(\frac{x}{2}\right)}{2 \cosh^{3}{\left(\frac{x}{2} \right)}} = - \frac{{\color{red}\left(\sinh{\left(u \right)}\right)} \frac{d}{dx} \left(\frac{x}{2}\right)}{2 \cosh^{3}{\left(\frac{x}{2} \right)}}$$

Volver a la variable original:

$$- \frac{\sinh{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(\frac{x}{2}\right)}{2 \cosh^{3}{\left(\frac{x}{2} \right)}} = - \frac{\sinh{\left({\color{red}\left(\frac{x}{2}\right)} \right)} \frac{d}{dx} \left(\frac{x}{2}\right)}{2 \cosh^{3}{\left(\frac{x}{2} \right)}}$$

Aplica la regla del factor constante $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ con $$$c = \frac{1}{2}$$$ y $$$f{\left(x \right)} = x$$$:

$$- \frac{\sinh{\left(\frac{x}{2} \right)} {\color{red}\left(\frac{d}{dx} \left(\frac{x}{2}\right)\right)}}{2 \cosh^{3}{\left(\frac{x}{2} \right)}} = - \frac{\sinh{\left(\frac{x}{2} \right)} {\color{red}\left(\frac{\frac{d}{dx} \left(x\right)}{2}\right)}}{2 \cosh^{3}{\left(\frac{x}{2} \right)}}$$

Aplica la regla de la potencia $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ con $$$n = 1$$$, en otras palabras, $$$\frac{d}{dx} \left(x\right) = 1$$$:

$$- \frac{\sinh{\left(\frac{x}{2} \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{4 \cosh^{3}{\left(\frac{x}{2} \right)}} = - \frac{\sinh{\left(\frac{x}{2} \right)} {\color{red}\left(1\right)}}{4 \cosh^{3}{\left(\frac{x}{2} \right)}}$$

Por lo tanto, $$$\frac{d}{dx} \left(\frac{1}{4 \cosh^{2}{\left(\frac{x}{2} \right)}}\right) = - \frac{\sinh{\left(\frac{x}{2} \right)}}{4 \cosh^{3}{\left(\frac{x}{2} \right)}}$$$.

Por lo tanto, $$$\frac{d^{2}}{dx^{2}} \left(\frac{1}{1 + e^{- x}}\right) = - \frac{\sinh{\left(\frac{x}{2} \right)}}{4 \cosh^{3}{\left(\frac{x}{2} \right)}}$$$.

Respuesta

$$$\frac{d^{2}}{dx^{2}} \left(\frac{1}{1 + e^{- x}}\right) = - \frac{\sinh{\left(\frac{x}{2} \right)}}{4 \cosh^{3}{\left(\frac{x}{2} \right)}}$$$A


Please try a new game Rotatly