Funktion $$$\frac{1}{1 + e^{- x}}$$$ toinen derivaatta
Aiheeseen liittyvät laskurit: Derivointilaskin, Logaritmisen derivoinnin laskin
Syötteesi
Määritä $$$\frac{d^{2}}{dx^{2}} \left(\frac{1}{1 + e^{- x}}\right)$$$.
Ratkaisu
Laske ensimmäinen derivaatta $$$\frac{d}{dx} \left(\frac{1}{1 + e^{- x}}\right)$$$
Funktio $$$\frac{1}{1 + e^{- x}}$$$ on kahden funktion $$$f{\left(u \right)} = \frac{1}{u}$$$ ja $$$g{\left(x \right)} = 1 + e^{- x}$$$ yhdistelmä $$$f{\left(g{\left(x \right)} \right)}$$$.
Sovella ketjusääntöä $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$${\color{red}\left(\frac{d}{dx} \left(\frac{1}{1 + e^{- x}}\right)\right)} = {\color{red}\left(\frac{d}{du} \left(\frac{1}{u}\right) \frac{d}{dx} \left(1 + e^{- x}\right)\right)}$$Sovella potenssisääntöä $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$, kun $$$n = -1$$$:
$${\color{red}\left(\frac{d}{du} \left(\frac{1}{u}\right)\right)} \frac{d}{dx} \left(1 + e^{- x}\right) = {\color{red}\left(- \frac{1}{u^{2}}\right)} \frac{d}{dx} \left(1 + e^{- x}\right)$$Palaa alkuperäiseen muuttujaan:
$$- \frac{\frac{d}{dx} \left(1 + e^{- x}\right)}{{\color{red}\left(u\right)}^{2}} = - \frac{\frac{d}{dx} \left(1 + e^{- x}\right)}{{\color{red}\left(1 + e^{- x}\right)}^{2}}$$Summan/erotuksen derivaatta on derivaattojen summa/erotus:
$$- \frac{{\color{red}\left(\frac{d}{dx} \left(1 + e^{- x}\right)\right)}}{\left(1 + e^{- x}\right)^{2}} = - \frac{{\color{red}\left(\frac{d}{dx} \left(1\right) + \frac{d}{dx} \left(e^{- x}\right)\right)}}{\left(1 + e^{- x}\right)^{2}}$$Vakion derivaatta on $$$0$$$:
$$- \frac{{\color{red}\left(\frac{d}{dx} \left(1\right)\right)} + \frac{d}{dx} \left(e^{- x}\right)}{\left(1 + e^{- x}\right)^{2}} = - \frac{{\color{red}\left(0\right)} + \frac{d}{dx} \left(e^{- x}\right)}{\left(1 + e^{- x}\right)^{2}}$$Funktio $$$e^{- x}$$$ on kahden funktion $$$f{\left(u \right)} = e^{u}$$$ ja $$$g{\left(x \right)} = - x$$$ yhdistelmä $$$f{\left(g{\left(x \right)} \right)}$$$.
Sovella ketjusääntöä $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$$- \frac{{\color{red}\left(\frac{d}{dx} \left(e^{- x}\right)\right)}}{\left(1 + e^{- x}\right)^{2}} = - \frac{{\color{red}\left(\frac{d}{du} \left(e^{u}\right) \frac{d}{dx} \left(- x\right)\right)}}{\left(1 + e^{- x}\right)^{2}}$$Eksponenttifunktion derivaatta on $$$\frac{d}{du} \left(e^{u}\right) = e^{u}$$$:
$$- \frac{{\color{red}\left(\frac{d}{du} \left(e^{u}\right)\right)} \frac{d}{dx} \left(- x\right)}{\left(1 + e^{- x}\right)^{2}} = - \frac{{\color{red}\left(e^{u}\right)} \frac{d}{dx} \left(- x\right)}{\left(1 + e^{- x}\right)^{2}}$$Palaa alkuperäiseen muuttujaan:
$$- \frac{e^{{\color{red}\left(u\right)}} \frac{d}{dx} \left(- x\right)}{\left(1 + e^{- x}\right)^{2}} = - \frac{e^{{\color{red}\left(- x\right)}} \frac{d}{dx} \left(- x\right)}{\left(1 + e^{- x}\right)^{2}}$$Sovella vakion kerroinsääntöä $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ käyttäen $$$c = -1$$$ ja $$$f{\left(x \right)} = x$$$:
$$- \frac{e^{- x} {\color{red}\left(\frac{d}{dx} \left(- x\right)\right)}}{\left(1 + e^{- x}\right)^{2}} = - \frac{e^{- x} {\color{red}\left(- \frac{d}{dx} \left(x\right)\right)}}{\left(1 + e^{- x}\right)^{2}}$$Sovella potenssisääntöä $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ käyttäen $$$n = 1$$$, toisin sanoen, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\frac{e^{- x} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{\left(1 + e^{- x}\right)^{2}} = \frac{e^{- x} {\color{red}\left(1\right)}}{\left(1 + e^{- x}\right)^{2}}$$Sievennä:
$$\frac{e^{- x}}{\left(1 + e^{- x}\right)^{2}} = \frac{1}{4 \cosh^{2}{\left(\frac{x}{2} \right)}}$$Näin ollen, $$$\frac{d}{dx} \left(\frac{1}{1 + e^{- x}}\right) = \frac{1}{4 \cosh^{2}{\left(\frac{x}{2} \right)}}$$$.
Seuraavaksi $$$\frac{d^{2}}{dx^{2}} \left(\frac{1}{1 + e^{- x}}\right) = \frac{d}{dx} \left(\frac{1}{4 \cosh^{2}{\left(\frac{x}{2} \right)}}\right)$$$
Sovella vakion kerroinsääntöä $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ käyttäen $$$c = \frac{1}{4}$$$ ja $$$f{\left(x \right)} = \frac{1}{\cosh^{2}{\left(\frac{x}{2} \right)}}$$$:
$${\color{red}\left(\frac{d}{dx} \left(\frac{1}{4 \cosh^{2}{\left(\frac{x}{2} \right)}}\right)\right)} = {\color{red}\left(\frac{\frac{d}{dx} \left(\frac{1}{\cosh^{2}{\left(\frac{x}{2} \right)}}\right)}{4}\right)}$$Funktio $$$\frac{1}{\cosh^{2}{\left(\frac{x}{2} \right)}}$$$ on kahden funktion $$$f{\left(u \right)} = \frac{1}{u^{2}}$$$ ja $$$g{\left(x \right)} = \cosh{\left(\frac{x}{2} \right)}$$$ yhdistelmä $$$f{\left(g{\left(x \right)} \right)}$$$.
Sovella ketjusääntöä $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$$\frac{{\color{red}\left(\frac{d}{dx} \left(\frac{1}{\cosh^{2}{\left(\frac{x}{2} \right)}}\right)\right)}}{4} = \frac{{\color{red}\left(\frac{d}{du} \left(\frac{1}{u^{2}}\right) \frac{d}{dx} \left(\cosh{\left(\frac{x}{2} \right)}\right)\right)}}{4}$$Sovella potenssisääntöä $$$\frac{d}{du} \left(u^{n}\right) = n u^{n - 1}$$$, kun $$$n = -2$$$:
$$\frac{{\color{red}\left(\frac{d}{du} \left(\frac{1}{u^{2}}\right)\right)} \frac{d}{dx} \left(\cosh{\left(\frac{x}{2} \right)}\right)}{4} = \frac{{\color{red}\left(- \frac{2}{u^{3}}\right)} \frac{d}{dx} \left(\cosh{\left(\frac{x}{2} \right)}\right)}{4}$$Palaa alkuperäiseen muuttujaan:
$$- \frac{\frac{d}{dx} \left(\cosh{\left(\frac{x}{2} \right)}\right)}{2 {\color{red}\left(u\right)}^{3}} = - \frac{\frac{d}{dx} \left(\cosh{\left(\frac{x}{2} \right)}\right)}{2 {\color{red}\left(\cosh{\left(\frac{x}{2} \right)}\right)}^{3}}$$Funktio $$$\cosh{\left(\frac{x}{2} \right)}$$$ on kahden funktion $$$f{\left(u \right)} = \cosh{\left(u \right)}$$$ ja $$$g{\left(x \right)} = \frac{x}{2}$$$ yhdistelmä $$$f{\left(g{\left(x \right)} \right)}$$$.
Sovella ketjusääntöä $$$\frac{d}{dx} \left(f{\left(g{\left(x \right)} \right)}\right) = \frac{d}{du} \left(f{\left(u \right)}\right) \frac{d}{dx} \left(g{\left(x \right)}\right)$$$:
$$- \frac{{\color{red}\left(\frac{d}{dx} \left(\cosh{\left(\frac{x}{2} \right)}\right)\right)}}{2 \cosh^{3}{\left(\frac{x}{2} \right)}} = - \frac{{\color{red}\left(\frac{d}{du} \left(\cosh{\left(u \right)}\right) \frac{d}{dx} \left(\frac{x}{2}\right)\right)}}{2 \cosh^{3}{\left(\frac{x}{2} \right)}}$$Hyperbolisen kosinin derivaatta on $$$\frac{d}{du} \left(\cosh{\left(u \right)}\right) = \sinh{\left(u \right)}$$$:
$$- \frac{{\color{red}\left(\frac{d}{du} \left(\cosh{\left(u \right)}\right)\right)} \frac{d}{dx} \left(\frac{x}{2}\right)}{2 \cosh^{3}{\left(\frac{x}{2} \right)}} = - \frac{{\color{red}\left(\sinh{\left(u \right)}\right)} \frac{d}{dx} \left(\frac{x}{2}\right)}{2 \cosh^{3}{\left(\frac{x}{2} \right)}}$$Palaa alkuperäiseen muuttujaan:
$$- \frac{\sinh{\left({\color{red}\left(u\right)} \right)} \frac{d}{dx} \left(\frac{x}{2}\right)}{2 \cosh^{3}{\left(\frac{x}{2} \right)}} = - \frac{\sinh{\left({\color{red}\left(\frac{x}{2}\right)} \right)} \frac{d}{dx} \left(\frac{x}{2}\right)}{2 \cosh^{3}{\left(\frac{x}{2} \right)}}$$Sovella vakion kerroinsääntöä $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ käyttäen $$$c = \frac{1}{2}$$$ ja $$$f{\left(x \right)} = x$$$:
$$- \frac{\sinh{\left(\frac{x}{2} \right)} {\color{red}\left(\frac{d}{dx} \left(\frac{x}{2}\right)\right)}}{2 \cosh^{3}{\left(\frac{x}{2} \right)}} = - \frac{\sinh{\left(\frac{x}{2} \right)} {\color{red}\left(\frac{\frac{d}{dx} \left(x\right)}{2}\right)}}{2 \cosh^{3}{\left(\frac{x}{2} \right)}}$$Sovella potenssisääntöä $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ käyttäen $$$n = 1$$$, toisin sanoen, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$- \frac{\sinh{\left(\frac{x}{2} \right)} {\color{red}\left(\frac{d}{dx} \left(x\right)\right)}}{4 \cosh^{3}{\left(\frac{x}{2} \right)}} = - \frac{\sinh{\left(\frac{x}{2} \right)} {\color{red}\left(1\right)}}{4 \cosh^{3}{\left(\frac{x}{2} \right)}}$$Näin ollen, $$$\frac{d}{dx} \left(\frac{1}{4 \cosh^{2}{\left(\frac{x}{2} \right)}}\right) = - \frac{\sinh{\left(\frac{x}{2} \right)}}{4 \cosh^{3}{\left(\frac{x}{2} \right)}}$$$.
Siispä $$$\frac{d^{2}}{dx^{2}} \left(\frac{1}{1 + e^{- x}}\right) = - \frac{\sinh{\left(\frac{x}{2} \right)}}{4 \cosh^{3}{\left(\frac{x}{2} \right)}}$$$.
Vastaus
$$$\frac{d^{2}}{dx^{2}} \left(\frac{1}{1 + e^{- x}}\right) = - \frac{\sinh{\left(\frac{x}{2} \right)}}{4 \cosh^{3}{\left(\frac{x}{2} \right)}}$$$A