Ableitung von $$$x + \sin{\left(x \right)}$$$
Ähnliche Rechner: Rechner für logarithmische Differentiation, Rechner zur impliziten Differentiation mit Schritten
Ihre Eingabe
Bestimme $$$\frac{d}{dx} \left(x + \sin{\left(x \right)}\right)$$$.
Lösung
Die Ableitung einer Summe/Differenz ist die Summe/Differenz der Ableitungen:
$${\color{red}\left(\frac{d}{dx} \left(x + \sin{\left(x \right)}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x\right) + \frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)}$$Die Ableitung des Sinus ist $$$\frac{d}{dx} \left(\sin{\left(x \right)}\right) = \cos{\left(x \right)}$$$:
$${\color{red}\left(\frac{d}{dx} \left(\sin{\left(x \right)}\right)\right)} + \frac{d}{dx} \left(x\right) = {\color{red}\left(\cos{\left(x \right)}\right)} + \frac{d}{dx} \left(x\right)$$Wenden Sie die Potenzregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ mit $$$n = 1$$$ an, mit anderen Worten, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$\cos{\left(x \right)} + {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = \cos{\left(x \right)} + {\color{red}\left(1\right)}$$Somit gilt $$$\frac{d}{dx} \left(x + \sin{\left(x \right)}\right) = \cos{\left(x \right)} + 1$$$.
Antwort
$$$\frac{d}{dx} \left(x + \sin{\left(x \right)}\right) = \cos{\left(x \right)} + 1$$$A