Ableitung von $$$x^{8} - 33$$$
Ähnliche Rechner: Rechner für logarithmische Differentiation, Rechner zur impliziten Differentiation mit Schritten
Ihre Eingabe
Bestimme $$$\frac{d}{dx} \left(x^{8} - 33\right)$$$.
Lösung
Die Ableitung einer Summe/Differenz ist die Summe/Differenz der Ableitungen:
$${\color{red}\left(\frac{d}{dx} \left(x^{8} - 33\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x^{8}\right) - \frac{d}{dx} \left(33\right)\right)}$$Wende die Potenzregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ mit $$$n = 8$$$ an:
$${\color{red}\left(\frac{d}{dx} \left(x^{8}\right)\right)} - \frac{d}{dx} \left(33\right) = {\color{red}\left(8 x^{7}\right)} - \frac{d}{dx} \left(33\right)$$Die Ableitung einer Konstante ist $$$0$$$:
$$8 x^{7} - {\color{red}\left(\frac{d}{dx} \left(33\right)\right)} = 8 x^{7} - {\color{red}\left(0\right)}$$Somit gilt $$$\frac{d}{dx} \left(x^{8} - 33\right) = 8 x^{7}$$$.
Antwort
$$$\frac{d}{dx} \left(x^{8} - 33\right) = 8 x^{7}$$$A
Please try a new game Rotatly