Ableitung von $$$x^{3} - 3 x^{2}$$$
Ähnliche Rechner: Rechner für logarithmische Differentiation, Rechner zur impliziten Differentiation mit Schritten
Ihre Eingabe
Bestimme $$$\frac{d}{dx} \left(x^{3} - 3 x^{2}\right)$$$.
Lösung
Die Ableitung einer Summe/Differenz ist die Summe/Differenz der Ableitungen:
$${\color{red}\left(\frac{d}{dx} \left(x^{3} - 3 x^{2}\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x^{3}\right) - \frac{d}{dx} \left(3 x^{2}\right)\right)}$$Wende die Konstantenfaktorregel $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ mit $$$c = 3$$$ und $$$f{\left(x \right)} = x^{2}$$$ an:
$$- {\color{red}\left(\frac{d}{dx} \left(3 x^{2}\right)\right)} + \frac{d}{dx} \left(x^{3}\right) = - {\color{red}\left(3 \frac{d}{dx} \left(x^{2}\right)\right)} + \frac{d}{dx} \left(x^{3}\right)$$Wende die Potenzregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ mit $$$n = 2$$$ an:
$$- 3 {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} + \frac{d}{dx} \left(x^{3}\right) = - 3 {\color{red}\left(2 x\right)} + \frac{d}{dx} \left(x^{3}\right)$$Wende die Potenzregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ mit $$$n = 3$$$ an:
$$- 6 x + {\color{red}\left(\frac{d}{dx} \left(x^{3}\right)\right)} = - 6 x + {\color{red}\left(3 x^{2}\right)}$$Vereinfachen:
$$3 x^{2} - 6 x = 3 x \left(x - 2\right)$$Somit gilt $$$\frac{d}{dx} \left(x^{3} - 3 x^{2}\right) = 3 x \left(x - 2\right)$$$.
Antwort
$$$\frac{d}{dx} \left(x^{3} - 3 x^{2}\right) = 3 x \left(x - 2\right)$$$A