Ableitung von $$$x^{3} - 2 x$$$ an der Stelle $$$x = c$$$
Ähnliche Rechner: Rechner für logarithmische Differentiation, Rechner zur impliziten Differentiation mit Schritten
Ihre Eingabe
Bestimmen Sie $$$\frac{d}{dx} \left(x^{3} - 2 x\right)$$$ und werten Sie es an der Stelle $$$x = c$$$ aus.
Lösung
Die Ableitung einer Summe/Differenz ist die Summe/Differenz der Ableitungen:
$${\color{red}\left(\frac{d}{dx} \left(x^{3} - 2 x\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x^{3}\right) - \frac{d}{dx} \left(2 x\right)\right)}$$Wende die Konstantenfaktorregel $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ mit $$$c = 2$$$ und $$$f{\left(x \right)} = x$$$ an:
$$- {\color{red}\left(\frac{d}{dx} \left(2 x\right)\right)} + \frac{d}{dx} \left(x^{3}\right) = - {\color{red}\left(2 \frac{d}{dx} \left(x\right)\right)} + \frac{d}{dx} \left(x^{3}\right)$$Wenden Sie die Potenzregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ mit $$$n = 1$$$ an, mit anderen Worten, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$- 2 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} + \frac{d}{dx} \left(x^{3}\right) = - 2 {\color{red}\left(1\right)} + \frac{d}{dx} \left(x^{3}\right)$$Wende die Potenzregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ mit $$$n = 3$$$ an:
$${\color{red}\left(\frac{d}{dx} \left(x^{3}\right)\right)} - 2 = {\color{red}\left(3 x^{2}\right)} - 2$$Somit gilt $$$\frac{d}{dx} \left(x^{3} - 2 x\right) = 3 x^{2} - 2$$$.
Werten Sie schließlich die Ableitung an der Stelle $$$x = c$$$ aus.
$$$\left(\frac{d}{dx} \left(x^{3} - 2 x\right)\right)|_{\left(x = c\right)} = 3 c^{2} - 2$$$
Antwort
$$$\frac{d}{dx} \left(x^{3} - 2 x\right) = 3 x^{2} - 2$$$A
$$$\left(\frac{d}{dx} \left(x^{3} - 2 x\right)\right)|_{\left(x = c\right)} = 3 c^{2} - 2$$$A