Ableitung von $$$x^{3} + 5 x^{2} + 7 x + 4$$$
Ähnliche Rechner: Rechner für logarithmische Differentiation, Rechner zur impliziten Differentiation mit Schritten
Ihre Eingabe
Bestimme $$$\frac{d}{dx} \left(x^{3} + 5 x^{2} + 7 x + 4\right)$$$.
Lösung
Die Ableitung einer Summe/Differenz ist die Summe/Differenz der Ableitungen:
$${\color{red}\left(\frac{d}{dx} \left(x^{3} + 5 x^{2} + 7 x + 4\right)\right)} = {\color{red}\left(\frac{d}{dx} \left(x^{3}\right) + \frac{d}{dx} \left(5 x^{2}\right) + \frac{d}{dx} \left(7 x\right) + \frac{d}{dx} \left(4\right)\right)}$$Die Ableitung einer Konstante ist $$$0$$$:
$${\color{red}\left(\frac{d}{dx} \left(4\right)\right)} + \frac{d}{dx} \left(7 x\right) + \frac{d}{dx} \left(5 x^{2}\right) + \frac{d}{dx} \left(x^{3}\right) = {\color{red}\left(0\right)} + \frac{d}{dx} \left(7 x\right) + \frac{d}{dx} \left(5 x^{2}\right) + \frac{d}{dx} \left(x^{3}\right)$$Wende die Konstantenfaktorregel $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ mit $$$c = 5$$$ und $$$f{\left(x \right)} = x^{2}$$$ an:
$${\color{red}\left(\frac{d}{dx} \left(5 x^{2}\right)\right)} + \frac{d}{dx} \left(7 x\right) + \frac{d}{dx} \left(x^{3}\right) = {\color{red}\left(5 \frac{d}{dx} \left(x^{2}\right)\right)} + \frac{d}{dx} \left(7 x\right) + \frac{d}{dx} \left(x^{3}\right)$$Wende die Potenzregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ mit $$$n = 2$$$ an:
$$5 {\color{red}\left(\frac{d}{dx} \left(x^{2}\right)\right)} + \frac{d}{dx} \left(7 x\right) + \frac{d}{dx} \left(x^{3}\right) = 5 {\color{red}\left(2 x\right)} + \frac{d}{dx} \left(7 x\right) + \frac{d}{dx} \left(x^{3}\right)$$Wende die Potenzregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ mit $$$n = 3$$$ an:
$$10 x + {\color{red}\left(\frac{d}{dx} \left(x^{3}\right)\right)} + \frac{d}{dx} \left(7 x\right) = 10 x + {\color{red}\left(3 x^{2}\right)} + \frac{d}{dx} \left(7 x\right)$$Wende die Konstantenfaktorregel $$$\frac{d}{dx} \left(c f{\left(x \right)}\right) = c \frac{d}{dx} \left(f{\left(x \right)}\right)$$$ mit $$$c = 7$$$ und $$$f{\left(x \right)} = x$$$ an:
$$3 x^{2} + 10 x + {\color{red}\left(\frac{d}{dx} \left(7 x\right)\right)} = 3 x^{2} + 10 x + {\color{red}\left(7 \frac{d}{dx} \left(x\right)\right)}$$Wenden Sie die Potenzregel $$$\frac{d}{dx} \left(x^{n}\right) = n x^{n - 1}$$$ mit $$$n = 1$$$ an, mit anderen Worten, $$$\frac{d}{dx} \left(x\right) = 1$$$:
$$3 x^{2} + 10 x + 7 {\color{red}\left(\frac{d}{dx} \left(x\right)\right)} = 3 x^{2} + 10 x + 7 {\color{red}\left(1\right)}$$Vereinfachen:
$$3 x^{2} + 10 x + 7 = \left(x + 1\right) \left(3 x + 7\right)$$Somit gilt $$$\frac{d}{dx} \left(x^{3} + 5 x^{2} + 7 x + 4\right) = \left(x + 1\right) \left(3 x + 7\right)$$$.
Antwort
$$$\frac{d}{dx} \left(x^{3} + 5 x^{2} + 7 x + 4\right) = \left(x + 1\right) \left(3 x + 7\right)$$$A